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Abstract:		40	

Natural	emissions	of	ozone-and-aerosol-precursor	gases	such	as	isoprene	and	41	
monoterpenes	are	high	in	the	southeast	of	the	US.	In	addition,	anthropogenic	emissions	42	
are	significant	in	the	Southeast	US	and	summertime	photochemistry	is	rapid.	The	NOAA-43	
led	SENEX	(Southeast	Nexus)	aircraft	campaign	was	one	of	the	major	components	of	the	44	
Southeast	Atmosphere	Study	(SAS)	and	was	focused	on	studying	the	interactions	between	45	
biogenic	and	anthropogenic	emissions	to	form	secondary	pollutants.	During	SENEX,	the	46	
NOAA	WP-3D	aircraft	conducted	20	research	flights	between	27	May	and	10	July	2013	47	
based	out	of	Smyrna,	TN.	48	

Here	we	describe	the	experimental	approach,	the	science	goals	and	early	results	of	the	49	
NOAA	SENEX	campaign.	The	aircraft,	its	capabilities	and	standard	measurements	are	50	
described.	The	instrument	payload	is	summarized	including	detection	limits,	accuracy,	51	
precision	and	time	resolutions	for	all	gas-and-aerosol	phase	instruments.	The	inter-52	
comparisons	of	compounds	measured	with	multiple	instruments	on	the	NOAA	WP-3D	are	53	
presented	and	were	all	within	the	stated	uncertainties,	except	two	of	the	three	NO2	54	
measurements.	55	

The	SENEX	flights	included	day-	and	nighttime	flights	in	the	Southeast	as	well	as	flights	56	
over	areas	with	intense	shale	gas	extraction	(Marcellus,	Fayetteville	and	Haynesville	57	
shale).	We	present	one	example	flight	on	16	June	2013,	which	was	a	daytime	flight	over	58	
the	Atlanta	region,	where	several	crosswind	transects	of	plumes	from	the	city	and	nearby	59	
point	sources,	such	as	power	plants,	paper	mills	and	landfills,	were	flown.	The	area	around	60	
Atlanta	has	large	biogenic	isoprene	emissions,	which	provided	an	excellent	case	for	61	
studying	the	interactions	between	biogenic	and	anthropogenic	emissions.	In	this	example	62	
flight,	chemistry	in	and	outside	the	Atlanta	plumes	was	observed	for	several	hours	after	63	
emission.	The	analysis	of	this	flight	showcases	the	strategies	implemented	to	answer	some	64	
of	the	main	SENEX	science	questions.	65	
	66	
	 	67	
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1.	Introduction	68	

The	SENEX	campaign	(Southeast	Nexus-Studying	the	Interactions	between	Natural	69	

and	Anthropogenic	Emissions	at	the	Nexus	of	Climate	Change	and	Air	Quality)	was	a	large-70	

scale	 National	 Oceanic	 and	 Atmospheric	 Administration	 (NOAA)	 led	 field	 study	 in	 the	71	

Southeastern	United	States	(U.S.)	in	summer	2013.	The	SENEX	measurement	platform	was	72	

the	NOAA	WP-3D	aircraft	operated	out	of	Smyrna,	Tennessee.	SENEX	was	part	of	a	large,	73	

comprehensive	 and	 coordinated	 research	 effort	 to	 understand	 the	 emission	 sources,	74	

chemistry	 and	 meteorology	 of	 the	 summertime	 atmosphere	 in	 the	 Southeast	 U.S.:	 the	75	

Southeast	 Atmosphere	 Study	 (SAS)	 (http://www.eol.ucar.edu/field_projects/sas),	 which	76	

included	 the	 other	 field	 campaigns:	 Southern	 Oxidant	 and	 Aerosol	 Study	 (SOAS),	77	

Tropospheric	HONO	(TropHONO),	and	the	North	American	Airborne	Mercury	Experiment	78	

(NAAMEX).	 Besides	 the	 NOAA	 WP-3D,	 measurements	 during	 SAS	 were	 made	 on	 the	79	

following	platforms	and	locations:	the	National	Science	Foundation	(NSF)	National	Center	80	

for	Atmospheric	Research	(NCAR)	C-130	aircraft,	the	Purdue	University	Duchess	aircraft,	81	

the	 State	 University	 of	 New	 York-Stony	 Brook	 Long-EZ	 aircraft,	 the	 Centreville	 and	82	

Alabama	Aquatic	Biodiversity	Centre	(AABC)	flux	ground	site	located	in	Alabama,	the	Look	83	

Rock,	 Tennessee	 ground	 site,	 the	 Research	 Triangle	 Park	 (RTP)	 ground	 site	 in	 North	84	

Carolina	and	Caltech	chamber	studies	(FIXIT).	85	

The	 detailed	 science	 goals	 for	 SENEX	 can	 be	 found	 in	 the	 SENEX	 white	 paper	86	

(http://esrl.noaa.gov/csd/projects/senex/)	and	are	briefly	listed	here:	87	

(1)	Understanding	the	emissions	of	aerosol,	aerosol	and	ozone	(O3)	precursors,	and	88	

greenhouse	 gases	 in	 the	 Southeast	 U.S.	 Special	 focus	was	 aimed	 at	 evaluating	 available	89	

emission	 inventories	 for	 organic	 aerosol,	 black	 carbon,	 NOx	 (NO+NO2),	 volatile	 organic	90	

compounds	(VOCs),	sulfur	dioxide	(SO2),	greenhouse	gases,	and	aerosol	precursors	 from	91	

point	 sources	 such	 as	 coal-fired	 power	 plants,	 urban	 areas	 as	 well	 as	 biogenic	 VOC	92	

emissions.	 Another	 focus	was	 to	 understand	 the	 importance	 of	 emissions	 from	biomass	93	

burning	in	the	region.	94	

(2)	Understanding	the	formation	mechanisms	of	secondary	species	such	as	ozone,	95	

sulfate	and	organic	aerosols	 in	the	Southeast	U.S.	The	main	focus	here	was	to	determine	96	

the	 influence	 of	 biogenic	 emissions,	 nighttime	 chemistry,	 aqueous-phase	 processes,	 and	97	

organic	nitrates	on	the	formation	of	the	secondary	species.	98	
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(3)	Determining	 the	composition	and	distribution	of	aerosol	 in	 the	Southeast	U.S.	99	

by	looking	at	the	relative	abundance	of	sulfate,	organics	and	other	chemical	components	100	

over	the	whole	study	region	and	at	accessible	altitude	levels.	101	

(4)	Quantifying	deposition	and	loss	processes	critical	for	determining	atmospheric	102	

concentrations	of	aerosol,	ozone	and	NOy	(sum	of	nitrogen	oxides).	103	

(5)	Determining	the	climate-relevant	properties	of	aerosol	in	the	Southeast	U.S.	by	104	

looking	 at	 the	 extinction,	 absorption	 and	 CCN	 properties	 of	 aerosol	 from	 primary	 and	105	

secondary	sources	and	their	dependence	on	the	high	humidity	in	the	Southeast	U.S.	Special	106	

focus	 was	 given	 on	 determining	 the	 fraction	 of	 organic	 aerosol	 that	 occurs	 naturally	107	

versus	 the	 fraction	 that	 is	 controlled	 by	 anthropogenic	 emissions	 and	 how	 each	 may	108	

change	 in	 the	 future	 as	 a	 result	 of	 warming	 and	 changes	 in	 anthropogenic	 emissions.	109	

Additional	 focus	was	on	black	 carbon	and	 its	 co-emitted	 species	 to	understand	whether	110	

controlling	specific	BC	sources	has	a	net	warming	or	cooling	effect.	111	

(6)	 Quantifying	 methane	 (CH4)	 and	 VOC	 emissions	 from	 selected	 shale	 gas	112	

extraction	regions	(Marcellus,	Haynesville	and	Fayetteville).	113	

In	this	paper	we	describe	the	payload	of	the	NOAA	WP-3D,	describe	the	locations	of	114	

the	 SENEX	 flights,	 show	 inter-comparisons	 used	 to	 evaluate	 the	 measurements	 and	115	

describe	an	example	flight	to	showcase	the	measurement	strategies	that	were	used	during	116	

SENEX.	117	

	118	

2.	Aircraft	measurement	description	119	

2.1.	NOAA	WP-3D	aircraft	120	

The	 two	NOAA	WP-3D	 aircraft	 have	 been	 used	 in	 air	 quality	 and	 climate	 related	121	

airborne	 field	campaigns	since	1994.	The	NOAA	WP-3D	carried	 its	maximum	payload	of	122	

3600	kg	of	scientific	equipment	during	SENEX	and	4-6	scientists.	The	aircraft	has	a	range	123	

of	3000	km	and	a	ceiling	of	about	7600	m.	During	SENEX	the	highest	altitude	was	about	124	

6400	 m	 due	 to	 the	 heavy	 payload.	 Flight	 duration	 was	 typically	 around	 7	 hr,	 and	 the	125	

majority	 of	 the	 flights	 were	 conducted	 in	 the	 daytime	 boundary	 layer	 approx.	 0.5	 km	126	

above	 ground	 level.	 In	 the	 boundary	 layer	 the	 aircraft	 travels	 at	 about	 115	m/s,	which	127	

means	that	for	most	instruments	measuring	at	1Hz	one	data	point	is	an	average	of	115m.	128	

A	picture	of	the	aircraft	taken	during	SENEX	is	shown	in	Figure	1.	129	
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The	WP-3D	 was	 equipped	 by	 the	 NOAA	 Aircraft	 Operations	 Center	 (AOC)	 flight	130	

facility	with	instruments	detailing	the	position	and	motion	of	the	aircraft	as	well	as	many	131	

meteorological	parameters	such	as	3D	wind	speed	and	direction,	ambient,	potential	and	132	

dew	point	temperatures,	water	vapor	mixing	ratios,	pressure	and	sea	surface	temperature.	133	

A	list	of	the	most	commonly	used	aircraft-provided	parameters	and	their	uncertainties	is	134	

given	in	Table	1.	135	

	136	

2.2.	NOAA	WP-3D	SENEX	flight	summaries	137	

During	SENEX	a	total	of	20	research	flights	were	conducted;	of	those,	two	were	test	138	

flights	from	Tampa,	FL	and	two	were	the	transfer	flights	between	Tampa,	FL	and	Smyrna,	139	

TN.	 All	 of	 the	 flights,	 including	 the	 test	 and	 transfer	 flights,	 addressed	multiple	 science	140	

goals.	All	the	SENEX	flight	tracks	are	shown	in	Figure	2	on	a	map	of	the	Southeast	US	that	141	

also	shows	most	of	the	larger	point	sources	in	the	region.	Twelve	daytime,	three	nighttime	142	

and	 five	 shale	 gas	 region	 flights	 (Marcellus,	 Haynesville	 and	 Fayetteville	 shale)	 were	143	

conducted	to	answer	the	major	SENEX	science	questions.	The	flight	tracks	in	Figure	2	are	144	

color-coded	by	those	three	categories	and	details	about	each	flight	can	be	found	in	Tables	145	

2,	3,	and	4,	where	a	short	description	of	the	flight,	the	investigated	emission	sources,	and	146	

the	coordinating	activities	are	listed.	147	

	148	

2.3.	NOAA	WP-3D	SENEX	chemical	and	aerosol	instrumentation	149	

The	WP-3D	 instrumentation	 payload	 on	 the	WP-3D	was	 specifically	 designed	 to	150	

provide	 the	 necessary	 measurements	 to	 answer	 the	 SENEX	 science	 questions.	 The	151	

instrumentation	 included	 a	 wide	 variety	 of	 gas	 and	 aerosol-phase	 measurements.	 A	152	

schematic	drawing	of	the	payload	of	the	WP-3D	is	shown	in	Figure	1b.	All	the	instruments	153	

for	aerosol	phase	measurements	are	listed	in	Table	5	and	for	gas	phase	measurements	in	154	

Table	 6	 together	 with	 their	 measurement	 technique,	 accuracy	 and	 precision,	 sample	155	

interval,	 and	 a	 reference	 to	 a	publication	describing	 the	 respective	 instrument	 in	detail.	156	

Overall	22	different	 instruments	were	 installed	on	 the	NOAA	WP-3D	with	a	 total	power	157	

consumption	of	40	A	(110V,	400	Hz	3	phase),	130	A	(110V,	400	Hz),	40A	(110V	60	Hz),	158	

and	 42	 A	 (28	 V	 DC).	 Most	 instruments	 were	 mounted	 inside	 the	 fuselage,	 but	 two	159	

instrumented	wingpods	added	significant	scientific	payload	capacity	including	72	whole-160	
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air	canister	samples,	a	carbon	monoxide	(CO)	analyzer	and	the	fine	particle	counter	to	add	161	

significant	 scientific	 payload	 capacity.	 Four	 to	 six	 scientists	were	 on	 board	 during	 each	162	

flight	to	monitor	all	the	instruments	and	adjust	the	flight	plans	to	current	meteorological	163	

conditions	 as	 needed.	 During	 the	 flights,	 selected	 aircraft	 and	 instrument	 data	 were	164	

streamed	 to	 the	 ground	 and	 could	 be	 monitored	 in	 near	 real	 time	 on	 a	 website	 for	165	

situational	awareness	for	all	SONGNEX	scientists.	166	

A	 detailed	 description	 for	 each	 instrument	 can	 be	 found	 in	 Appendix	 A;	 in	 the	167	

following	two	paragraphs	the	instrument	name	and	measurement	technique	are	given	and	168	

in	Tables	5	and	6,	accuracy,	precision,	sample	interval	and	literature	reference	are	listed	in	169	

addition.	170	

Aerosol-phase	measured	parameters	were:	(1)	the	particle	(0.004-8.3µm)	number,	171	

size	and	volume	with	parallel	condensation	particle	counters	(CPCs)	and	white	and	laser	172	

light	 scattering,	 (2)	 sub-micrometer	 extinction	 and	 absorption	 of	 dry,	 humidified,	 and	173	

thermodenuded	aerosol	at	three	wavelengths	spanning	the	visible	with	a	cavity	ringdown	174	

aerosol	 extinction	 spectrometer	 (CRD)	 and	 a	 photoacoustic	 aerosol	 absorption	175	

spectrometer	 (PAS),	 (3)	 the	 non-refractory	 submicron	 aerosol	 composition	 of	 organics,	176	

sulfate,	 nitrate,	 ammonium	 and	 chloride	with	 an	 aerosol	mass	 spectrometer	 (AMS),	 (4)	177	

cloud	 condensation	 nuclei	 (CCN)	 spectra	 between	 0.1-0.8%	 supersaturation,	 (5)	178	

accumulation-mode	refractory	black	carbon	(rBC)	mass	content	of	single	particles	with	an	179	

SP2.	The	aerosol	 instrumentation	 inside	 the	 fuselage	was	connected	 to	a	 low	turbulence	180	

inlet	(LTI)	(Wilson	et	al.,	2004),	which	slows	down	the	sample	flow	from	aircraft	speeds	to	181	

5	m/s	 generating	minimal	 turbulence	 and	 improving	particle	 transmission.	The	NMASS,	182	

measuring	 ultrafine	 particles,	 is	 subject	 to	 diffusive	 rather	 than	 inertial	 losses	 and	183	

sampled	instead	from	a	double	diffusing	inlet	in	the	non-pressurized	wing	pod.	184	

Gas-phase	measurements	were:	(1)	the	greenhouse	gases	carbon	dioxide	(CO2)	and	185	

methane	 (CH4)	 with	 wavelength	 scanned	 cavity	 ringdown	 spectroscopy,	 (2)	 two	186	

measurements	 of	 nitric	 oxide	 (NO)	 and	 O3,	 each	 measured	 by	 gas-phase	187	

chemiluminescence	 (CL)	and	by	 cavity	 ringdown	absorption	 spectroscopy	 (CRDS),	 three	188	

measurements	 of	 nitrogen	 dioxide	 (NO2),	 by	 UV	 photolysis	 and	 gas-phase	189	

chemiluminescence	 (P-CL)	 and	 by	 CRDS	 and	 by	 airborne	 cavity	 enhanced	 absorption	190	
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spectroscopy	 (ACES),	 NOy	 by	 gold-catalyzed	 thermal	 conversion	 and	 gas-phase	 CL,	 (3)	191	

carbon	monoxide	 (CO)	with	vacuum	UV	resonance	 fluorescence,	 (4)	SO2	with	pulsed	UV	192	

fluorescence,	 (5)	 ammonia	 (NH3),	 nitric	 acid	 (HNO3),	 and	 two	measurements	 of	 nitrous	193	

acid	 (HONO),	 and	 formic	 acid	 (HCOOH)	 with	 chemical	 ionization	 mass	 spectrometry	194	

(CIMS),	and	(6)	the	nighttime	oxidants	NO3	and	N2O5	with	CRDS	and	CIMS.	Various	volatile	195	

organic	 compounds	 (VOCs)	 were	 measured	 with	 several	 different	 techniques:	 (7)	196	

oxygenates,	 aromatics,	 isoprene,	 monoterpenes	 and	 acetonitrile	 with	 Proton-Transfer-197	

Reaction	Mass	Spectrometry	(PTR-MS);	(8)	hydrocarbons,	halocarbons	and	a	few	selected	198	

oxygenates	 from	 canister	 samples	 and	 post-flight	 GC-MS	 analysis	 (iWAS/GCMS);	 (9)	199	

formaldehyde	 with	 the	 In	 Situ	 Airborne	 Formaldehyde	 (ISAF)	 using	 laser	 induced	200	

fluorescence	(LIF);	(10)	glyoxal	with	ACES;	(11)	organic	and	inorganic	acids	by	UW-TOF-201	

CIMS;	and	(12)	peroxyacyl	nitrates	PANs	and	nitryl	chloride	(ClNO2)	with	a	separate	CIMS.	202	

In	 addition	 up	 and	 down	welling	 photolysis	 rates	 (jNO2 and jO3) were measure	with	 filter	203	

radiometers. 204	

All	 gas	 phase	 instruments	 used	 dedicated	 inlets,	 which	 were	 either	 3/8”	 O.D.	205	

rearward-facing	tubes	or	airfoil	winglets	mounted	in	place	of	aircraft	windows	extending	206	

beyond	the	aircraft	boundary	layer.	The	total	inlet	lengths	varied	from	about	0.3-2	m	for	207	

the	 different	 instruments.	 For	 example,	 the	 HNO3	 and	 NH3-CIMS	 instruments	 had	 their	208	

reaction	chambers	mounted	a	few	centimeters	away	from	the	window	plate	and	the	inlet	209	

length	 was	 largely	 determined	 by	 the	 50-cm	 length	 of	 the	 winglet	 needed	 to	 sample	210	

outside	 the	aircraft	boundary	 layer.	Detailed	descriptions	of	 the	 inlets	 for	 the	 individual	211	

instruments	can	be	found	in	the	instrument	descriptions	in	the	Appendix. 212	

	213	

3.	Inter-comparison	of	Duplicate	Measurements	on	the	WP-3D	214	

Some	 parameters	 were	 measured	 by	 more	 than	 one	 instrument	 on	 the	 WP-3D,	215	

giving	opportunities	for	inter-comparisons	and	the	results	are	described	in	the	following.	216	

Three	instruments	measured	NO2:	P-CL,	CRDS,	and	ACES.	The	agreement	between	217	

CRDS	and	ACES	with	the	standard	P-CL	technique,	as	shown	in	Figure	3,	was	on	average	218	

6%	and	10%	and	the	measurements	were	correlated	with	a	linear	correlation	coefficient	219	

(R2)	of	0.99	and	0.93,	 respectively.	The	agreement	 is	within	 the	combined	uncertainties,	220	

given	in	Table	6,	for	CRDS	and	just	outside	for	ACES	and	P-CL.	Two	instruments	measured	221	
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ozone:	 P-CL	 and	 CRDS	 and	 the	 inter-comparison	 is	 also	 shown	 in	 Figure	 3.	 The	 ozone	222	

measurements	 correlated	 with	 R2	 of	 0.96	 and	 agreed	 on	 average	 within	 8%,	 which	 is	223	

within	the	combined	measurement	uncertainties	of	the	two	instruments	as	given	in	Table	224	

6.	All	 the	data	 for	 the	whole	 campaign	were	 included	 for	 this	 inter-comparison	using	1-225	

second	ozone	data;	NO2	data	were	averaged	 to	 the	5-second	ACES	 time	 resolution.	Two	226	

instruments	 measured	 NO:	 CL	 and	 CRDS,	 with	 the	 CRDS	 data	 subject	 to	 an	 optical	227	

instability	 that	degraded	 the	detection	 limit	during	 this	 campaign.	The	 large	majority	of	228	

the	 data	 were	 below	 this	 degraded	 detection	 limit,	 and	 therefore	 the	 inter-comparison	229	

was	not	included	here.	230	

Benzene,	 toluene,	 isoprene,	 methanol,	 acetone,	 methyl	 vinyl	 ketone	 plus	231	

methacrolein	(MVK+MACR)	and	methyl	ethyl	ketone	(MEK)	were	measured	on	the	WP-3D	232	

with	both	the	PTR-MS	and	with	iWAS/GCMS.	As	an	example	the	isoprene	time	series	for	233	

the	flight	on	June	29,	2013	is	shown	for	both	instruments	in	Figure	4.	For	the	purpose	of	234	

this	comparison,	the	PTR-MS	data	are	averaged	over	an	interval	that	starts	10	s	before	and	235	

stops	 10	 s	 after	 the	 canister	 filling	 time,	 which	 was	 about	 3-10s,	 while	 the	 PTR-MS	236	

measures	 for	 1s	 every	17s.	 This	 averaging	 ensured	 that	 at	 least	 one	PTR-MS	data	point	237	

was	 used	 for	 each	 canister	 sample,	 but	 adds	 additional	 scatter	 to	 the	 inter-comparison.	238	

Isoprene	has	 a	 very	 high	 variability	 in	 the	 boundary	 layer,	 due	 to	 its	 short	 lifetime	 and	239	

high	 emissions.	 This	 variability	 and	 imperfect	 time	 alignment	 causes	 a	 large	part	 of	 the	240	

scatter	observed	 in	Figure	4.	The	 scatter	plots	 for	 the	 inter-comparison	of	 isoprene	and	241	

other	VOCs	are	shown	in	Figure	4	as	well.	The	comparison	had	slopes	between	0.64-1.45,	242	

which	is	 just	within	the	combined	uncertainties	of	the	two	instruments	given	in	Table	6,	243	

and	R2	of	0.5	or	higher.	The	iWAS/GCMS	was	deployed	during	SENEX	for	the	first	time	and	244	

some	instrument	issues	occurred,	causing	some	degradation	of	the	data	quality	compared	245	

to	previous	inter-comparisons	(de	Gouw	and	Warneke,	2007;	Warneke	et	al.,	2011a).	More	246	

details	 on	 the	 instrument	 performance	 during	 SENEX,	 the	 inter-comparison	 and	 the	247	

stability	of	VOCs,	especially	oxygenates,	in	canisters	can	be	found	in	Lerner	at	al	(2015).	248	

Two	 instruments	 measured	 formic	 acid	 (HCOOH):	 the	 HNO3-CIMS	 and	 the	249	

University	 of	 Washington	 high-resolution	 time-of-flight	 chemical	 ionization	 mass	250	

spectrometer	 (UW	HR-ToF-CIMS)	 and	 their	 comparison	 is	 shown	 in	 Figure	 5.	 The	 time	251	

series	shows	results	from	one	individual	flight	and	the	scatter	plot	shows	all	data	from	the	252	
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campaign,	where	the	color	code	indicates	the	individual	flights.	The	comparison	using	all	253	

the	data	has	a	 slope	of	1.03	and	R2	of	0.80,	while	 the	 slopes	of	 individual	 flights	 ranged	254	

from	 1.40	 to	 0.66	 with	 R2	 always	 higher	 than	 0.91.	 The	 reason	 for	 the	 flight-to-flight	255	

variability	 in	 their	agreement	 is	yet	unknown.	The	output	of	 the	continuously	added	13C	256	

formic	acid	permeation	device	–	to	which	the	UW	HR-ToF-CIMS	instrument	sensitivity	was	257	

referenced	(see	SI)	–	may	have	contributed	to	the	variability	of	 the	reported	formic	acid	258	

mixing	 ratio	 between	 flights,	 because	 an	 independent	 method	 of	 quantification	 of	 its	259	

output	 was	 not	 available	 (Veres	 et	 al.,	 2010).	 Cross	 calibrations	 were	 not	 conducted	260	

between	 the	 two	 instruments	 during	 the	 campaign	 and	 therefore	 do	 not	 allow	 direct	261	

comparisons	 of	 instrument	 sensitivity	 on	 a	 flight-to-flight	 basis.	 Nevertheless,	 the	262	

variability	 between	 the	 two	measurements	 is	 within	 the	 combined	 uncertainties	 of	 the	263	

two	instruments	(±20%	for	HNO3-CIMS	and	±50%	for	UW	HR-ToF-CIMS).	264	

During	 the	 night	 flights	 two	 instruments	measured	 ClNO2:	 the	 UW	HR-ToF-CIMS	265	

and	 the	 PAN-CIMS	 and	 N2O5	 was	measured	 with	 the	 UW	 HR-ToF-CIMS	 and	 CRDS.	 The	266	

comparison	is	shown	in	Figure	6	as	time	series	and	scatter	plots	for	the	flight	on	03	July	267	

2013.	The	slopes	are	1.19	and	0.91	and	the	R2	0.74	and	0.92,	respectively.	For	small	signals	268	

such	 as	 ClNO2,	 the	 signal	 to	 noise	 of	 the	 UW	 HR-ToF-CIMS	 is	 aided	 by	 its	 ability	 to	269	

distinguish	 isobaric	 contaminants	 from	 halogen	 containing	 molecules,	 which	 have	 a	270	

distinct	mass	defect	(Kercher	et	al.,	2009;	Lee	et	al.,	2014).	The	scatter	plot	displays	some	271	

non-linearity	and	the	N2O5	is	just	outside	the	range	of	a	previous	comparison	(Chang	et	al.,	272	

2011),	but	the	results	are	within	the	combined	uncertainties	of	 the	 instruments	given	in	273	

Table	6.	274	

Figure	 7	 shows	 the	 NOy	 budget	 for	 all	 the	 individually	 measured	 NOy	 species	275	

compared	to	the	measured	total	NOy	for	the	NOAA	WP-3D	flight	on	16	June	2013.	Aerosol	276	

nitrate	might	contribute	about	2%	to	the	sum.	This	assumes	a	quantitative	sampling	and	277	

conversion	of	 aerosol	nitrate.	This	 is	 likely	not	 the	 case	and	NOy	 from	aerosol	nitrate	 is	278	

likely	 an	 upper	 limit	 and	 the	 data	 are	 shown	 with	 and	 without	 the	 potential	 aerosol	279	

contribution.	The	highest	mixing	ratios	of	NOy	are	observed	in	power	plant	plumes,	where	280	

most	NOy	consists	of	NOx.	For	a	more	detailed	comparison	the	NOz	(=NOy-NOx)	budget	is	281	

shown	in	Figure	7	as	well.	The	power	plant	plumes	were	removed	for	this	comparison	by	282	

looking	at	the	location	of	the	power	plants,	the	wind	direction	and	the	large	increases	in	283	
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NOx	 downwind	 of	 the	 power	 plants	 were	 removed	 from	 the	 data	 in	 Figure	 7.	 In	 those	284	

plumes	 the	 time	 resolution	 and	 the	 accuracy	 of	 NOy	 and	 NOx	 are	 not	 high	 enough	 to	285	

calculate	small	differences	in	NOz	during	these	periods	with	very	high	NOx	mixing	ratios.	286	

On	this	flight	the	sum	of	individually	measured	NOy	constituents	was	roughly	90%	of	the	287	

total	measured	as	NOy,	similar	to	the	whole	campaign	NOy	budget.	The	unmeasured	NOy	288	

outside	power	plants	was	about	25%	(or	15%,	when	 including	aerosol	nitrate).	Organic	289	

nitrates	derived	from	the	oxidation	of	 isoprene	and	monoterpene	have	been	detected	by	290	

Lee	 et	 al.,	 (2014)	 during	 SENEX	 and	 these	 compounds	 will	 contribute	 to	 the	 missing	291	

fraction	of	individual	NOy	constituents,	but	total	organic	nitrates	have	not	been	quantified	292	

during	SENEX	and	were	not	added	to	the	sum	of	individually	measured	NOy	constituents.	293	

The	 aerosol	 volume	 derived	 from	 the	 chemical	 composition	 data	 (AMS	 and	 SP2)	294	

was	 compared	 to	 the	 volume	 derived	 from	 the	 measured	 size	 distributions,	 following	295	

Middlebrook	et	al.	(2012).	All	of	these	measurements	sampled	aerosol	downstream	of	a	1	296	

micron	impactor.	For	each	10	s	AMS	measurement,	the	composition-derived	volume	was	297	

calculated	 by	 adding	 the	 average	 rBC	 mass	 from	 the	 SP2	 instrument	 to	 the	 AMS	 total	298	

aerosol	mass	and	dividing	it	by	the	density	estimated	from	the	AMS	and	BC	composition.	299	

The	mass-weighted	density	(ρ)	was	calculated	using	ρorg	=	1.25	g	cm-3	(Cross	et	al.,	2007;	300	

Kiendler-Scharr	 et	 al.,	 2009;	 Zelenyuk	 et	 al.,	 2008),	 ρinorg	 =	 1.75	 g	 cm-3	 (primarily	 dry	301	

ammonium	sulfate,	(Perry	and	Green,	1997)),	and	ρBC	=	1.8	g	cm-3	(Park	et	al.,	2004),	for	302	

organic	mass,	inorganic	mass,	and	BC,	respectively.	The	measured	AMS	lens	transmission	303	

curve	(Bahreini	et	al.,	2008)	was	applied	to	the	particle	number	distributions	to	account	304	

for	 particle	 transmission	 losses	 in	 the	AMS	 lens	 before	 calculating	 the	 volume	 from	 the	305	

size	distributions,	which	were	 also	 averaged	over	 the	AMS	 sampling	 time.	 For	 this	 field	306	

project,	the	fraction	of	aerosol	volume	behind	the	1	micron	impactor	that	was	transmitted	307	

into	the	AMS	instrument	by	the	lens	was	on	average	99%	with	a	minimum	of	92%.	308	

The	 slope	 of	 the	 composition-derived	 volume	 versus	 the	 volume	 calculated	 from	309	

the	size	distributions	with	available	data	are	shown	in	Figure	8	as	a	function	of	flight	date	310	

color	coded	with	the	linear	correlation	coefficient	R2.	The	grey	bands	indicate	the	overall	311	

combined	2σ	uncertainty	of	±60%	(Bahreini	et	al.,	2009a;	Brock	et	al.,	2011;	Schwarz	et	al.,	312	

2006).	The	volumes	from	most	of	the	flights	agree	within	this	combined	uncertainty	and	313	

with	R2	values	between	0.62	to	0.98,	 indicating	that	most	of	 the	aerosol	 in	 the	AMS	lens	314	
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transmission	size-range	was	composed	of	non-refractory	material	and	black	carbon.	Only	315	

the	slopes	for	flights	on	29	June	2013	was	outside	the	uncertainty	band.	We	note	that	rBC	316	

only	 contributed	 1%	 on	 average	 to	 the	 total	 accumulation	 mode	 mass,	 and	 in	 1-min	317	

averages	only	exceeded	3%	less	than	1%	of	the	time	during	SENEX.	318	

On	29	June	2013	the	NOAA	WP-3D	and	the	NSF	NCAR	C-130	did	coordinated	wing-319	

to-wing	flight	legs	in	the	free	troposphere	and	the	boundary	layer	for	an	inter-comparison	320	

in	 southern	 Tennessee	 and	 northern	 Alabama	 with	 a	 duration	 of	 just	 over	 one	 hour.	321	

Several	 over-flights	 over	 the	 SOAS	 ground	 site	 in	 Centreville	 were	 performed	 during	322	

SENEX.	Results	of	the	platform	inter-comparisons	will	not	be	presented	here.	323	

	324	

4.	Example	Flight	on	16	June	2013	near	Atlanta,	GA	325	

Results	 from	 the	 SENEX	 research	 flight	 on	 16	 June	 2013	 are	 presented	 here	 to	326	

demonstrate	 the	 strategy	used	 to	address	many	of	 the	SENEX	science	questions	 such	as	327	

the	 determination	 of	 anthropogenic	 and	 biogenic	 emissions,	 and	 the	 subsequent	328	

atmospheric	chemistry,	transformation,	and	production	of	secondary	species.	Flights	over	329	

the	shale	gas	regions	will	not	be	discussed	here,	but	calculations	of	the	methane	emission	330	

fluxes	from	the	three	shale	gas	regions	can	be	found	elsewhere	(Peischl	et	al.,	2015;	Yuan	331	

et	al.,	2015).	The	major	goal	of	the	16	June	2013	flight	was	to	investigate	the	Atlanta	urban	332	

plume	and	the	Scherer	and	Harllee	Branch	power	plant	plumes	as	they	were	transported	333	

over	heavily	forested	areas	in	Georgia	with	strong	biogenic	emissions.	334	

	335	

4.1	Anthropogenic,	biogenic	and	point	source	emissions	336	

Figure	9a	shows	the	WP-3D	flight	track	over	Atlanta	and	surrounding	areas	color-337	

coded	 by	NOy	 on	 top	 of	 a	map	 showing	 anthropogenic	 emission	 sources,	which	 are	 the	338	

urban	areas	and	point	sources:	power	plants,	 landfills,	paper	mills	and	coal	mines.	Other	339	

point	sources	studied	that	are	not	shown	on	this	map	include	biofuel	refineries	(de	Gouw	340	

et	 al.,	 2015a).	 The	 point	 sources	 are	 sized	 by	 their	 respective	 emission	 strengths	 or	341	

capacity.	The	flight	included	eight	tracks	perpendicular	to	the	wind	direction	(numbered	342	

0-7	in	Figure	9a):	one	upwind	of	Atlanta,	three	over	the	metro	area	and	four	downwind.	343	

The	flight	tracks	were	set	such	that	the	distance	between	each	leg	represents	about	1	hour	344	
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of	 transport	 at	 the	 prevailing	wind	 speed	 and	 also	 such	 that	many	 of	 the	 point	 source	345	

plumes	were	intercepted.	346	

Figure	10	shows	results	 for	 the	 intercepts	of	 such	point	source	plumes.	 In	Figure	347	

10a	 the	methane	measurements	 along	 transect	 4	 downwind	 of	 the	 Pine	Bluff	 landfill	 in	348	

Georgia	are	shown.	Landfills	are	an	important	source	of	methane	in	the	US,	but	they	do	not	349	

emit	many	other	compounds	and	indeed	methane	was	the	only	species	measured	aboard	350	

the	WP-3D	 payload	 that	 showed	 a	 detectable	 enhancement	 in	 the	 plume.	 The	 forested	351	

Southeast	US	 is	heavily	managed	 for	 large-scale	wood	and	wood	products	and	 therefore	352	

has	a	large	density	of	pulp	and	paper	mills.	Pulp	and	paper	mills	use	a	significant	amount	353	

of	energy,	which	they	often	produce	partially	on	site.	For	example	the	investigated	facility	354	

has	four	steam	producing	boilers	at	close	to	80	MWh	that	mainly	burn	coal,	natural	gas,	oil	355	

and	 wood/bark	 waste	 biomass.	 The	 power	 production	 results	 in	 emissions	 of	 the	356	

combustion	species	NO,	NO2,	CO,	SO2	and	CO2	(only	NO	is	shown	in	Figure	10b).	The	paper	357	

mill	 plumes	 were	 intercepted	 on	 transect	 0	 during	 this	 flight.	 High	 mixing	 ratios	 of	358	

monoterpenes,	 methanol	 and	 acetaldehyde	 were	 also	 observed	 downwind	 of	 those	359	

facilities	(Figure	10b).	360	

U.S.	urban	emissions,	and	therefore	urban	mixing	ratios	of	many	air	pollutants	have	361	

decreased	significantly	over	the	last	few	decades	(Dallmann	and	Harley,	2010;	Emmons	et	362	

al.,	2015;	von	Schneidemesser	et	al.,	2010;	Warneke	et	al.,	2012).	For	example,	Warneke	et	363	

al.	(2012)	analyzed	50	years	of	ambient	measurements	and	found	that	VOCs	and	CO	have	364	

decreased	 at	 an	 annual	 rate	 of	 about	 7.5%	 in	 Los	 Angeles,	 CA.	 Blanchard	 et	 al.	 (2015)	365	

analyzed	 Southeastern	 Aerosol	 Research	 and	 Characterization	 (SEARCH)	 network	 data	366	

and	found	downward	trends	in	ambient	carbon	monoxide	(CO),	sulfur	dioxide	(SO2),	and	367	

oxidized	nitrogen	species	(NOy)	concentrations	averaged	1.2	±	0.4	to	9.7	±	1.8%	per	year	368	

from	1999	to	2010.	The	NOAA	WP-3D	flew	over	Atlanta,	GA	during	SOS	(Southern	Oxidant	369	

Study	1999)	on	6	July	1999	and	the	results	are	shown	in	Figure	11	and	are	compared	to	370	

the	 SENEX	 16	 June	 2013	 data.	 These	 two	 days	 were	 comparable	 in	 meteorological	371	

conditions	with	wind	 speeds	 around	4	m/s,	 temperatures	 around	260C	 in	 the	boundary	372	

layer,	and	boundary	layer	heights	of	about	1.6	km	on	6	July	1999	and	1-1.2	km	on	16	June	373	

2013.	The	 flight	 track	on	 top	of	 the	map	color	coded	with	1999	NOy	has	 the	same	color	374	

scale	as	the	flight	on	June	16,	2013	shown	in	Figure	9	and	clearly	shows	qualitatively	that	375	
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the	pollution	was	more	intense	and	widespread.	The	time	series	of	CO	and	NOy	for	the	two	376	

flights	in	Figure	11	are	consistent	with	significant	emissions	decreases	between	1999	and	377	

2013.	 It	 is	expected	that	 the	comparison	between	the	1999	and	2013	airborne	data	sets	378	

will	provide	important	 insights	and	evidence	to	answer	the	main	science	questions	from	379	

SENEX.	380	

	381	

4.2	Coal	and	natural	gas	fired	power	plant	plumes	382	

During	 SENEX	 several	 power	 plant	 plumes	 were	 sampled.	 Figure	 12	 shows	 the	383	

flight	track	from	the	22	June	2013	over	Atlanta	that	 included	transects	downwind	of	the	384	

coal	 fired	 Bowen	 and	 the	 natural	 gas	 combined	 cycle	 McDonough	 power	 plants.	 The	385	

emission	 intensities	 of	 these	 two	 different	 kinds	 of	 power	 plants	 are	 very	 different;	386	

combined	cycle	natural	gas	power	plant	have	much	lower	CO2,	SO2	and	NOx	emissions	per	387	

unit	 energy	 produced	 than	 coal	 fired	 power	 plants	 (de	 Gouw	 et	 al.,	 2014).	 The	 Bowen	388	

power	 plant	 produced	 3.3	 TWh	 and	 McDonough	 4.7	 TWh	 in	 the	 1st	 quarter	 of	 2013.	389	

According	 to	 the	 continuous	 emissions	 monitoring	 systems	 (CEMS)	 monitoring	 data,	390	

during	 the	 1st	 quarter	 of	 2013	 the	 Bowen	 power	 plant	 emitted	 930	 g/kWh	 CO2,	 0.20	391	

g/kWh	 SO2	 and	 0.56	 g/kWh	 NOx,	 while	 McDonough	 emitted	 360	 g/kWh	 CO2,	 0.0019	392	

g/kWh	 SO2	 and	 0.018	 g/kWh	 NOx.	 These	 large	 differences	 in	 emission	 intensities	 are	393	

clearly	 reflected	 in	 the	 enhancements	 measured	 in	 the	 downwind	 transects	 shown	 in	394	

Figure	12.	In	the	Bowen	power	plant	plume	about	20	ppmv	CO2,	5	ppbv	NOy	and	4	ppbv	395	

SO2	enhancements	were	observed,	while	the	McDonough	plume	had	only	about	5	ppmv	of	396	

CO2	enhancement	and	SO2	and	NOy	were	not	measurably	enhanced	above	background.	To	397	

account	for	the	different	dilutions	during	transport	(5km	distance	for	Bowen	and	10	km	398	

for	 McDonough	 at	 about	 3m/s	 average	 wind	 speed)	 enhancement	 ratios	 need	 to	 be	399	

considered.	In	the	Bowen	plume	0.24	ppb/ppm	of	NOy/CO2	and	0.13	ppb/ppm	of	SO2/CO2	400	

were	 measured.	 Because	 no	 enhancements	 in	 the	 McDonough	 plume	 were	 seen,	401	

enhancement	 ratios	 cannot	 be	 determined,	 but	 using	 a	 S/N=2	 the	 upper	 limit	 for	402	

enhancement	ratios	in	the	McDonough	plume	are	0.06	ppb/ppm	for	of	NOy/CO2	and	0.11	403	

ppb/ppm	for	SO2/CO2	are	determined.	This	shows	that	the	NOy	and	SO2	enhancements	in	404	

the	gas	 fired	McDonough	plant	are	clearly	smaller	 than	 in	 the	coal	 fired	Bowen	plant.	 In	405	

addition	to	investigating	emissions	from	the	power	plant	plumes	as	was	shown	here,	the	406	
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emissions	of	those	power	plants	mix	with	the	large	emissions	of	 isoprene	in	this	area	as	407	

can	be	seen	in	Figure	9.	This	provides	an	ideal	case	for	studying	the	interactions	between	408	

natural	 and	anthropogenic	 emissions.	The	 chemistry	of	 isoprene,	OH,	 formaldehyde	and	409	

NOx	 in	 power	 plant	 plumes	 and	 other	 areas	 during	 SENEX	 will	 be	 described	 in	 detail	410	

elsewhere	(de	Gouw	et	al.,	2015b;	Kaiser	et	al.,	2015;	Wolfe	et	al.,	2015).	411	

	412	

4.3	Modeling	Support	for	SENEX	413	

During	SENEX	various	models	were	available	that	delivered	outputs	along	the	flight	414	

tracks	 of	 the	WP-3D	 aircraft:	 the	NOAA	AM3	model	 (Li	 et	 al.,	 2016;	Wolfe	 et	 al.,	 2016)	415	

(http://esrl.noaa.gov/csd/projects/senex/),	 an	MCM-based	 0-D	 box	model	 (Wolfe	 et	 al.,	416	

2016),	WRF-Chem	 (Weather	Research	 and	 Forecasting	with	 Chemistry)	 and	 FLEXPART-417	

WRF	 (Angevine	 et	 al.,	 2014)	 simulations	 and	 the	 Lagrangian	 particle	 dispersion	model	418	

FLEXPART	(Stohl	et	al.,	2005).	419	

Here	we	show	results	of	one	of	those	models	as	an	example.	Figure	13	shows	the	420	

modeling	 support	 for	 SENEX	 from	 the	 FLEXPART	 model.	 To	 simulate	 air	 pollution	421	

transport,	 the	 FLEXPART	 Lagrangian	 particle	 dispersion	model	 (Stohl	 et	 al.,	 2005)	was	422	

used.	 This	 model	 has	 been	 used	 successfully	 in	 the	 past	 to	 simulate	 the	 transport	 of	423	

anthropogenic	 emissions	 or	 biomass	 burning	 plumes.	 FLEXPART	 was	 driven	 by	424	

meteorological	 data	 from	 the	 National	 Centers	 for	 Environmental	 Prediction	 (NCEP)	425	

Global	Forecast	System	(GFS)	with	a	temporal	resolution	of	3	h	(analyses	at	00:00,	06:00,	426	

12:00,	18:00	UTC;	3-h	forecasts	at	03:00,	09:00,	15:00,	21:00	UTC)	and	26	pressure	levels.	427	

Horizontal	 resolution	 was	 0.5×0.5	 degrees	 globally.	 The	 emission	 and	 atmospheric	428	

transport	 of	 anthropogenic	 sources	 was	 computed	 using	 anthropogenic	 CO	 and	 NOx	429	

emissions	from	the	EPA	2005	National	Emission	Inventory	for	sources	in	North	America,	430	

and	EDGAR	for	sources	in	Asia.	A	passive	biomass	burning	CO	tracer	was	calculated	using	431	

MODIS	 satellite	 fire	 detections	 and	 the	 algorithm	 of	 Stohl	 et	 al.	 (2007),	which	 uses	 fire	432	

detection	 data,	 information	 on	 landuse	 and	 applies	 emission	 factors	 from	 Andreae	 and	433	

Merlet	(2001).	The	biomass	burning	injection	height	was	prescribed	relatively	to	the	local	434	

planetary	boundary	 layer	height,	 following	 the	 injection	height	 statistic	 in	Brioude	et	 al.	435	

(Brioude	et	al.,	2009).	The	tracers	were	advected	in	the	model	for	20	days.	The	FLEXPART	436	
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model	 output	 can	 be	 accessed	 at	437	

http://www.esrl.noaa.gov/csd/groups/csd4/forecasts/senex/.	438	

To	 estimate	 the	 surface	 origin	 of	 air	 masses	 measured	 by	 the	 NOAA	 P3	 aicraft,	439	

surface	 contribution	 maps	 were	 calculated	 using	 FLEXPART-WRF	 backtrajectories	440	

(Brioude	et	al.,	2013)	driven	by	the	WRF	mesoscale	model	output	at	12x12km	resolution	441	

available	every	hour.	20000	particles	were	released	from	locations	along	the	flight	tracks	442	

every	20	seconds,	and	tracked	back	in	time	for	10	days.	The	model	outputs	the	residence	443	

time	of	 the	particles	 in	 a	 volume	 such	 as	 the	 surface	 layer.	By	multiplying	 the	 footprint	444	

with	gridded	emission	fluxes	the	model	calculates	the	mixing	ratio	of	the	emitted	species	445	

at	the	 location	of	the	aircraft.	All	species	are	considered	as	conserved	tracers;	the	model	446	

does	 not	 contain	 chemical	 transformations,	 but	 it	 does	 keep	 track	 of	 the	 time	 since	447	

emission.	 As	 an	 example,	 Figure	 13	 a	 and	 b	 show	 the	 time	 series	 of	 FLEXPART	 NOy	448	

(accumulating	emissions	from	the	previous	48	hours)	together	with	the	flight	track	color	449	

coded	with	NOy.	Comparing	the	modeled	and	measured	NOy	in	Figure	13a	and	Figure	9,	it	450	

can	be	seen	that	the	model	reproduces	the	time	series	qualitatively,	including	the	broader	451	

features	and	the	power	plant	plume	encounters.	The	very	high	mixing	ratios	in	the	narrow	452	

power	plant	plumes	are	underestimated	in	the	model	(the	plumes	are	too	narrow	for	the	453	

model	resolution).	The	 footprint	map	 for	a	point	along	the	 last	 flight	 track	downwind	of	454	

the	Harllee	 Branch	 power	 plant	 plume	 is	 shown	 in	 Figure	 13c	 showing	 that	 the	mixing	455	

ratios	 at	 this	 point	 along	 the	 flight	 track	 will	 have	 the	 highest	 contribution	 from	 the	456	

immediate	 upwind	 area	 that	 includes	 the	Harllee	 Branch	 power	 plant,	 just	 as	 expected.	457	

But	 there	 was	 also	 a	 significant	 contribution	 to	 the	 mixing	 ratios	 from	 long-range	458	

transport	 from	 the	Northeast	 US.	 Other	 available	 FLEXPART	model	 outputs	 include	 CO,	459	

biomass	burning	CO,	SO2,	isoprene	and	monoterpenes.		460	

	461	

5.	Summary	462	

The	Southeast	Atmosphere	Study	 (SAS)	was	a	 large	collaborative	and	community	463	

effort	to	understand	the	air	quality	and	climate	issues	in	the	Southeast	United	States.	This	464	

paper	 provides	 a	 summary	 of	 the	 experimental	 setup	 for	 the	 NOAA-led	 SENEX	 study,	465	

which	was	an	important	component	of	the	SAS.	The	NOAA	WP-3D	aircraft	capabilities,	the	466	

payload,	 instrument	 descriptions,	 inter-comparisons	 and	 flight	 locations	 and	 goals	 are	467	
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described	 in	 detail	 in	 this	 paper.	 The	 flight	 on	 16	 June	 2013	 in	 the	 Atlanta	 area	 was	468	

described	in	some	detail	to	demonstrate	the	strategies	used	during	SENEX	to	study	the	air	469	

quality	and	climate	relevant	 interactions	of	biogenic	and	anthropogenic	emissions	 in	the	470	

Southeast,	which	was	one	of	the	main	foci	of	the	SAS	study.	471	

	472	

	473	

APPENDIX	A:	Detailed	descriptions	of	instruments	on	the	NOAA	WP-3D	474	

	475	

1.	Aerosol	Particle	Size	Distributions:	PI	Charles	Brock	476	

The	 NOAA	 ESRL	 cloud	 and	 aerosol	 processes	 group	 operated	 three	 instruments	477	

that	 together	provided	the	concentration	of	particles	as	a	 function	of	 their	dry	size	 from	478	

0.004	 µm	 to	 7.0	 µm	 diameter.	 The	 size	 distribution	 is	 a	 fundamental	 property	 of	 the	479	

atmospheric	 aerosol,	 and	 it	 contributes	 to	 understanding	 aerosol	 sources	 and	 sinks,	480	

optical	properties,	cloud	nucleation	potential,	and	chemical	transformations.		481	

	Particles	with	diameters	from	~0.004	to	0.07	µm	were	measured	with	a	5-channel	482	

condensation	 particle	 counter	 (CPC),	 the	 nucleation-mode	 aerosol	 size	 spectrometer	483	

(NMASS)	 (Brock	 et	 al.,	 2000).	 This	 unique	 instrument	 samples	 particles	 into	 a	 low	484	

pressure	 region	 (~100	 hPa)	 where	 they	 are	 exposed	 to	 a	 warm	 vapor	 from	 a	485	

perfluorinated	 organic	 compound.	 The	 sample	 airstream	 is	 then	 cooled,	 producing	 a	486	

supersaturation	 of	 the	 vapor.	 Particles	 larger	 than	 a	 critical	 size	 are	 nucleated	 form	 a	487	

droplet	of	the	organic	fluid	and	are	counted	with	a	simple	laser	optical	counter.	Each	of	the	488	

five	 NMASS	 channels	 operates	 at	 a	 different	 temperature,	 so	 that	 the	 critical	 diameter	489	

varies	 in	each.	Particles	with	diameters	 larger	than	0.004,	0.008,	0.015,	0.030,	and	0.055	490	

µm	are	nucleated	and	counted	independently.	Differencing	the	channels	provides	a	coarse	491	

resolution,	 but	 fast	 (1	 second)	 time	 response,	 measurement	 of	 the	 size	 distribution	 of	492	

ultrafine	particles.	493	

Particles	 with	 diameters	 from	 0.07	 to	 ~1.0	µm	were	measured	 by	 an	 ultra-high	494	

sensitivity	aerosol	spectrometer	(UHSAS)	(Brock	et	al.,	2011).	The	aerosol	sample	enters	a	495	

resonant	 cavity	 that	 is	 driven	by	 a	 solid-state	 laser	 at	 1053	nm	wavelength.	The	 size	 of	496	

each	particle	is	determined	by	measuring	the	amount	of	side-scattered	light	reaching	two	497	
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solid-state	 photodiode	 detectors.	 The	 instrument	 was	 housed	 in	 the	 same	 rack	 as	 the	498	

aerosol	 optical	 properties	 (AOP)	 instruments,	 and	 sampled	 from	 the	 same	dried	 (<10%	499	

relative	 humidity,	 RH)	 airstream	 that	 supplied	 the	 optical	 instruments.	 The	 UHSAS	 has	500	

been	 substantially	 modified	 from	 the	 commercial	 laboratory	 version	 (Droplet	501	

Measurement	Technologies,	Boulder,	Colorado)	and	has	been	equipped	with	an	RH	control	502	

system.	 The	 RH	 of	 the	 sample	 can	 be	 switched	 between	 the	 default	 dry	 mode	 and	 an	503	

elevated	humidity	(~85%	RH).	The	change	in	the	aerosol	size	distribution	can	be	used	to	504	

evaluate	the	hygroscopicity	of	the	particles.	The	humidified	and	dry	size	distribution	can	505	

be	 used	 to	 calculate	 how	 aerosol	 properties,	 such	 as	 directional	 scattering	 (asymmetry	506	

parameter)	vary	with	atmospheric	humidity.	507	

Particles	with	diameters	 from	~0.7	µm	to	7.0	µm	were	measured	with	a	custom-508	

built	white-light	optical	particle	counter	(WLOPC).	This	instrument	detects	light	from	a	3-509	

watt	white-light-emitting	diode	(LED)	source	that	is	scattered	over	a	wide	angle	by	single	510	

particles.	The	white	light	source	is	used	to	reduce	particle	sizing	biases	caused	by	widely	511	

varying	particle	compositions	and	shapes	that	are	typical	of	supermicron	aerosol	particles.	512	

The	 high	 sample	 flow	 rate	 of	 the	 WLOPC	 results	 in	 acceptable	 counting	 statistics	 for	513	

supermicron	particles	over	time	periods	of	~10	s	at	typical	coarse	particle	concentrations.	514	

The	inlet	of	the	WLOPC	is	maintained	at	<40%	RH	by	heating	the	sample	line	as	necessary.		515	

The	UHSAS	and	WLOPC	operated	in	the	WP-3D	cabin	and	sampled	air	downstream	516	

of	the	low-turbulence	inlet	(LTI)	(Wilson	et	al.,	2004).	The	LTI	actively	removes	turbulent	517	

flow	developing	along	the	walls	of	a	conical	diffuser.	Since	the	NMASS	measures	ultrafine	518	

particles	subject	to	diffusive	rather	than	inertial	losses,	it	sampled	instead	from	a	double	519	

diffusing	inlet	in	a	non-pressurized	wing	pod.		520	

	521	

2.	Cloud	condensation	nuclei	(CCN):	PI	Athanasios	Nenes	522	

The	Georgia	Tech	group	operated	a	Continuous	Flow	Streamwise	Thermal	Gradient	523	

CCN	chamber	 (CFSTGC)	 (Lance	et	al.,	2006;	Roberts	and	Nenes,	2005)	 in	Scanning	Flow	524	

CCN	 Analysis	mode	 (SFCA)	 (Moore	 and	 Nenes,	 2009)	 on	 the	WP-3D	 during	 the	 SENEX	525	

mission.	The	instrument	provided	CCN	spectra,	or	the	number	of	aerosol	that	act	as	cloud	526	

condensation	nuclei	as	a	function	of	supersaturation.	527	
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The	CFSTGC	used	is	made	by	Droplet	Measurement	Technologies	(CCN-100	SN007,	528	

DMT;	Lance	et	al.,	2006)	and	consists	of	a	cylindrical	metal	tube	(0.5	m	in	length	with	a	23	529	

mm	inner	diameter	and	10	mm	wall	thickness)	with	a	wetted	inner	wall	on	which	a	linear	530	

temperature	gradient	is	applied	in	the	stream-wise	direction.	The	temperature	gradient	is	531	

controlled	using	three	thermoelectric	coolers	(TECs)	located	on	the	outer	wall	of	the	flow	532	

chamber	 (Figure	 A1),	 and	 water	 flows	 continuously	 through	 a	 2.5	 mm	 thick,	 porous,	533	

ceramic	bisque	that	lines	the	inside	of	the	cylinder.	Heat	and	water	vapor	diffuse	toward	534	

the	centerline	of	the	flow	chamber.	Since	moist	air	is	largely	composed	of	N2	and	O2,	which	535	

are	heavier	molecules	than	H2O,	the	latter	has	a	higher	molecular	velocity,	hence	diffuses	536	

more	 quickly	 than	heat	 (which	 is	 transferred	primary	 via	 collisions	 between	 slower	N2,	537	

O2).	 Under	 developed	 flow	 conditions,	 a	 quasi-parabolic	water	 vapor	 supersaturation	 is	538	

generated	in	the	radial	direction,	which	is	maximized	at	the	centerline	(Roberts	and	Nenes,	539	

2005).	 The	 aerosol	 sample	 enters	 the	 top	 of	 the	 column	 at	 the	 centerline	 and	 is	540	

surrounded	by	a	blanket	of	humidified,	 aerosol-free	 sheath	air.	 If	 the	 supersaturation	 in	541	

the	 instrument	 exceeds	 the	 critical	 supersaturation	 of	 the	 aerosol,	 the	 particles	 activate	542	

and	form	droplets,	which	are	counted	and	sized	by	an	optical	particle	counter	(OPC)	using	543	

a	50	mW,	658	nm	wavelength	laser	diode	light	source.	The	droplet	concentration	is	then	544	

equal	 to	 the	 concentration	 of	 CCN	 at	 the	 supersaturation	 considered.	 The	 droplet	 size	545	

distribution	information	obtained	in	the	OPC	also	allows	using	the	CFSTGC	to	study	CCN	546	

activation	kinetics	(Raatikainen	et	al.,	2012;	Raatikainen	et	al.,	2013).	547	

The	CFSTGC	was	operated	in	SFCA	(Moore	and	Nenes,	2009)	mode,	which	allowed	548	

rapid,	 high-resolution	 measurements	 of	 CCN	 spectra.	 SFCA	 is	 based	 on	 varying	 the	549	

instrument	flow	rate	while	keeping	the	instrument	pressure	and	streamwise	temperature	550	

difference	constant.	Varying	the	flow	rate	at	a	sufficiently	slow	rate	allows	the	operation	of	551	

the	 instrument	at	pseudo-steady	state,	where	 instantaneous	flow	rates	correspond	to	an	552	

instantaneous	supersaturation	and	greatly	facilitates	inversion	of	the	CCN	time	series	to	a	553	

CCN	spectrum.	SFCA	overcomes	the	limitations	of	operating	the	CFSTGC	under	a	“constant	554	

flow”	mode	(where	the	flow	rate	is	maintained	at	a	constant	value	and	supersaturation	is	555	

adjusted	 by	 changing	 the	 column	 temperature	 gradient	 in	 the	 streamwise	 direction),	556	

requiring	20-120	seconds	 for	column	temperatures	to	stabilize	during	a	supersaturation	557	

change.	During	SENEX,	flow	rate	in	the	CFSTGC	in	SFCA	mode	was	controlled	using	a	mass	558	
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flow	 controller	 (MKS	 Instruments	 model	 M100B01313CR1BV)	 with	 signal	 to	 the	 mass	559	

flow	 controller	 generated	 with	 an	 Arduino	 Uno	 microcontroller	 board	 (Lin	 et	 al.,	 in	560	

preparation).	CCN	spectra	were	obtained	every	60	seconds,	over	a	supersaturation	range	561	

of	 0.1	 to	 0.8%.	 The	 CCN	 concentration	 uncertainty	 was	 ±	 10%	 or	 5-10	 cm-3	 under	562	

conditions	 of	 low	 counting	 statistics.	 The	 absolute	 supersaturation	 uncertainty	 was	563	

±0.04%	(Moore	et	al.,	2012).	564	

Supersaturation	 in	 the	 instrument	 is	 sensitive	 to	pressure	 fluctuations	associated	565	

with	altitude	changes.	For	this,	a	DMT	pressure	control	box	combined	with	a	custom-built	566	

inlet	 that	minimizes	particle	 losses	was	connected	upstream	of	 the	CFSTGC	 (Figure	A1).	567	

The	device	ensured	a	constant	pressure	in	the	CFSTGC,	typically	set	to	a	value	below	the	568	

minimum	 ambient	 pressure	 encountered	 during	 a	 science	 flight.	 Pressure	 changes	 also	569	

occur	within	the	CCN	instrument	chamber	 from	flow	rate	changes	during	a	 typical	SFCA	570	

cycle.	This	affects	 the	 instantaneous	supersaturation	 in	 the	 instrument	 in	a	reproducible	571	

and	 predictable	 manner	 and	 can	 be	 accounted	 for	 with	 calibration	 (Lin	 et	 al.,	 2016;	572	

Raatikainen	et	al.,	2014).	573	

	574	

Figure	A1:	Instrument	setup	for	measuring	CCN	spectra	during	SENEX.	575	

DMT
Pressure
Control Box

DMT
CFSTGC
Counter

Arduino

Ambient Sample

Pressure Inlet



	 20	

	576	

3.	Aerosol	Optical	Properties	(AOP)	577	

The	 NOAA	 ESRL	 cloud	 and	 aerosol	 processes	 group	 operated	 an	 aerosol	 optical	578	

properties	(AOP)	instrument	package	on	the	NOAA	P3	during	the	SENEX	mission.	The	AOP	579	

package	 provided	 multi-wavelength,	 multi-RH	 aerosol	 extinction	 and	 absorption	580	

measurements	 with	 fast	 response	 and	 excellent	 accuracy	 and	 stability	 on	 aircraft	581	

platforms.	The	instruments	also	characterized	the	optics	of	black	carbon	(BC)	mixing	state,	582	

brown	 carbon,	 and	water	 uptake	 of	 aerosol.	 Two	 instruments,	 a	 cavity	 ringdown	 (CRD)	583	

aerosol	 extinction	 spectrometer	 and	 a	 photoacoustic	 absorption	 spectrometer	 (PAS)	584	

comprised	the	AOP	package.	585	

	586	

3.1.	 Cavity	 ringdown	 aerosol	 extinction	 spectrometer	 (CRD):	 PI	 Justin	587	

Langridge,	Nick	Wagner	588	

The	CRD	instrument	(Langridge	et	al.,	2011)	 is	composed	of	8	separate	ringdown	589	

cavities	 (Figure	 A2).	 Each	 channel	 of	 the	 instrument	 consists	 of	 a	 sample	 cell	 located	590	

between	 two	 highly	 reflective	mirrors,	which	 form	 an	 optical	 cavity	with	 effective	 path	591	

lengths	 ranging	 from	 7	 km	 to	 60	 km	 in	 particle-free	 air.	 A	 laser	 is	 used	 to	 periodically	592	

inject	 light	 into	 the	cavity	and	the	optical	power	 in	 the	cavity	decays	exponentially	after	593	

the	laser	turned	off.	Light	leaking	through	the	back	mirror	of	the	cavity	is	used	to	monitor	594	

the	 decay.	 The	 time	 constant	 of	 the	 exponential	 decay	 is	 proportional	 to	 the	 total	595	

extinction	coefficient	of	the	optical	cavity.	The	extinction	due	to	aerosol	is	measured	using	596	

the	difference	 in	 the	 extinction	when	 aerosol	 is	 present	 or	 absent	 from	 the	 sample	 cell.	597	

Before	entering	the	sample	cell,	the	aerosol	is	dried	using	a	nafion	drier	(Permapure	PD-598	

200T-12-MSS,	Toms	River,	New	Jersey,	USA),	and	gas-phase	absorbers	are	removed	using	599	

an	activated	carbon	monolith	(MAST	Carbon	NovaCarb	F,	Basingstoke,	United	Kingdom).	600	

Three	channels	are	used	to	measure	dry	(RH	<	25%)	extinction	coefficients	at	405,	601	

532,	 and	 662	 nm.	 Two	 channels	measure	 extinction	 coefficients	 downstream	 of	 250°	 C	602	

thermal	denuder	 at	405	nm	and	662	nm,	 and	 two	 channels	measure	532	nm	extinction	603	

coefficients	downstream	of	nafion	humidifiers	(Permapure	MH-110-12SD-4,	Toms	River,	604	

New	Jersey,	USA),	which	are	controlled	to	70%	and	90%	RH.	An	eighth	channel	measures	605	

405	nm	extinction	coefficients	downstream	of	a	particle	filter,	which	served	as	a	check	for	606	
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the	 scrubbing	 of	 gas-phase	 absorbers.	 The	 CRD	 had	 a	 1	Hz	 sensitivity	 of	 0.1	Mm-1,	 and	607	

accuracy	of	<2%,	and	a	precision	of	~10%	for	extinctions	in	the	range	of	10-100	Mm-1.	The	608	

precision	is	improved	to	~1%	with	sample	averaging	to	60	s.	609	

	610	

	611	
Figure	A2:	The	eight	separate	ringdown	cells	in	the	CRD	instrument	612	

	613	

3.2.	Photoacoustic	absorption	spectrometer	(PAS):	PI	Daniel	Lack	614	

The	 PAS	 instrument	 (Lack	 et	 al.,	 2012)	 is	 composed	 of	 5	 separate	 acoustic	615	

resonators	that	also	serve	as	sample	cells	that	are	each	illuminated	by	a	multi-pass	optical	616	

cavity.	 A	 continuous-wave	 laser	 is	 intensity-modulated	 at	 the	 acoustic	 resonance	617	

frequency	 of	 each	 resonator.	 Light-absorbing	 particles	 heat	 the	 air,	 producing	 acoustic	618	

pulses	 that	 are	 detected	with	 a	 sensitive	microphone.	 Because	 the	 resonance	 frequency	619	

varies	 with	 pressure	 and	 temperature,	 a	 speaker	 is	 used	 to	 actively	 determine	 the	620	

resonance	frequency	and	tune	the	laser	modulation	to	match.	Like	the	CRD	instrument,	the	621	

PAS	 samples	 aerosol	 downstream	of	 a	 nafion	drier	 (Permapure	PD-200T-12-MSS,	 Toms	622	

River,	New	Jersey,	USA),	and	gas-phase	absorbers	are	removed	using	an	activated	carbon	623	

monolith	(MAST	Carbon	NovaCarb	F,	Basingstoke,	United	Kingdom).	624	

Three	of	 the	channels	of	 the	PAS	 instrument	are	used	 to	measure	dry	absorption	625	

coefficients	 at	 405,	 532	 and	 662	 nm.	 The	 remaining	 two	 channels	 measure	 absorption	626	

downstream	of	 the	 thermal	denuder.	Accuracy	of	 the	PAS	 is	~10%	and	sensitivity	 is	~1	627	

Mm-1	for	1	Hz	sampling.	628	
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The	combined	AOP	instrument	package	measured	the	aerosol	properties	necessary	629	

for	calculations	of	radiative	forcing	and	atmospheric	heating	rates.	Further,	the	measured	630	

parameters	 can	 be	 directly	 compared	 to	 those	 derived	 from	 remote	 sensing	631	

measurements	 from	 satellite,	 airborne,	 and	 ground-based	 sensors.	 Additional	632	

measurements,	 such	 as	 the	 change	 in	 aerosol	 absorption	 and	 extinction	 as	 condensed	633	

coatings	 are	 thermally	 evaporated	 from	 absorbing	 cores,	 will	 improve	 mechanistic	634	

understanding	of	the	role	of	clear	and	brown	carbon	coatings	in	controlling	aerosol	optical	635	

properties,	and	the	sources	and	evolution	of	these	coatings	in	the	atmosphere.	Finally,	the	636	

absorption	 of	 the	 refractory	 cores	 can	 be	 compared	 to	 the	 BC	 mass	 measurements,	637	

allowing	 a	 direct	 linkage	 between	 atmospheric	 loadings	 of	 BC	 and	 radiative	 effects	 and	638	

helping	constrain	simulations	of	aerosol	impacts	on	climate.	639	

	640	

4.	Single-Particle	Soot	Photometer	(SP2):	PI	Joshua	P.	Schwarz,	Milos	Markovic	641	

The	SP2	is	a	laser-induced	incandescence	instrument	that	measures	the	refractory	642	

black	 carbon	 (rBC)	 mass	 content	 of	 individual	 particles	 and	 thus	 delivers	 detailed	643	

information	not	only	about	rBC	loadings,	but	also	size	distributions,	even	in	exceptionally	644	

clean	 air	 (Schwarz	 et	 al.,	 2010).	 The	 instrument	 can	 also	 provide	 the	 optical	 size	 of	645	

individual	 particles	 containing	 rBC	 and	 identify	 the	 presence	 of	 optically	 significant	646	

internal	 mixtures	 with	 the	 BC	 fraction	 (Schwarz	 et	 al.,	 2008).	 Note	 that	 rBC	 is	647	

experimentally	equivalent	to	elemental	carbon	as	measured	by	OC/EC	instruments	at	the	648	

level	of	15%	(Kondo	et	al.,	2011).	649	

The	SP2	system	is	shown	schematically	in	Figure	A3.	Ambient	air	is	drawn	through	650	

an	intense	intracavity	laser	(a	diode-pumped	Nd:YAG	laser	operating	in	a	Gaussian	TEM-651	

00	mode	at	1.064	µm	wavelength).	Aerosol	particles	 in	the	air	enter	the	 laser	singly	and	652	

scatter	 laser	 light	 according	 to	 their	 size,	 composition	 and	morphology.	 The	 quantity	 of	653	

scattered	 light	 and	 its	 evolution	 in	 time	 are	 recorded.	When	 an	 rBC-containing	 particle	654	

enters	the	laser,	the	rBC	is	heated	to	vaporization	(~3500K),	emitting	blackbody	radiation	655	

(incandescent	 light)	 in	 the	visible	 in	quantities	directly	related	 to	 its	mass,	 regardless	of	656	

particle	morphology	or	mixing	 state.	 The	 color	 of	 this	 radiation	 is	 detected	 and	used	 to	657	

deduce	the	vaporization	temperature	of	the	particle	as	a	constraint	on	its	composition.	A	658	

detector	 system	 developed	 by	 NOAA	 is	 used	 to	 optically	 size	 rBC-containing	 particles	659	
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before	 laser	 heating	 perturbs	 them.	 This	 allows	 quantification	 of	 the	 amount	 of	 non-BC	660	

material	 (interpreted	 as	 a	 coating	 thickness	 via	 shell-core	 Mie	 theory)	 associated	 with	661	

each	BC	core,	and	its	impact	on	the	optical	properties	(including	absorption	cross-section)	662	

of	 the	 BC-component.	 Only	 a	 limited	 range	 of	 rBC	 mass	 in	 individual	 particles	 can	 be	663	

quantified;	 this	 range	 covers	most	 of	 the	 accumulation	mode	 rBC	mass	 that	 dominates	664	

total	rBC	aerosol	loadings,	except	near	tail-pipes.	665	

	666	

	667	
Figure	A3.	Schematic	diagram	of	the	SP2	photometer	showing	the	basic	optics	and	668	

laser-induced	incandescence	and	scattering	detectors.		669	

	670	

5.	 Compact-Time-of-Flight	 Aerosol	 Mass	 Spectrometer	 (C-ToF	 AMS):	 PI	 Ann	671	

Middlebrook,	Jin	Liao,	Andre	Welti	672	

A	 key	 aspect	 of	 the	 SENEX	 project	 was	 to	 quantify	 the	 abundance	 and	 chemical	673	

composition	 of	 atmospheric	 aerosol	 particles	 above	 the	 Southeastern	 United	 States.	 To	674	

accomplish	 this,	 we	 use	 a	 semi-custom	 Compact	 Time-of-Flight	 Aerosol	 Mass	675	

Spectrometer	or	C-ToF-AMS	with	a	light	scattering	(LS)	module	(Aerodyne	Research	Inc.,	676	

Billerica,	MA).		677	

The	general	operation	of	AMS	instruments	has	been	described	elsewhere	(Allan	et	678	

al.,	2003;	Canagaratna	et	al.,	2007;	Jayne	et	al.,	2000;	Jimenez	et	al.,	2003).	Briefly,	particles	679	

are	transmitted	into	the	AMS	detection	region	using	an	aerodynamic	focusing	lens,	where	680	

they	 impact	 an	 inverted-cone	porous-tungsten	vaporizer	 typically	held	at	~	600	 °C,	 and	681	

volatilize,	with	the	vapors	being	analyzed	by	electron	ionization	mass	spectrometry.	The	682	

C-ToF-AMS	system	deployed	here	employs	a	long	aerosol	time-of-flight	drift	region	and	a	683	

compact-time-of-flight	mass	 spectrometer,	which	 combined	has	high	 size-resolution	and	684	

high	 sensitivity	 for	 individual	 particle	 mass	 spectral	 signals	 (DeCarlo	 et	 al.,	 2006;	685	
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Drewnick	et	al.,	2005).	Particles	between	100	and	700	nm	vacuum	aerodynamic	diameter	686	

are	 sampled	with	 100%	 efficiency	 through	 the	 specific	 aerodynamic	 focusing	 lens	 used	687	

here	and	the	custom	pressure-controlled	inlet	designed	for	airborne	operation	(Bahreini	688	

et	al.,	2008;	Liu	et	al.,	1995).	Details	on	calibration,	data	collection	and	data	processing	are	689	

described	elsewhere	(Allan	et	al.,	2004;	Bahreini	et	al.,	2009b;	Middlebrook	et	al.,	2012).	690	

For	SENEX,	the	AMS	was	operated	with	low	sensitivity,	which	increased	the	uncertainty	in	691	

accuracy	to	roughly	50%.	692	

The	LS	module	has	been	previously	used	by	other	investigators	in	a	few	laboratory	693	

and	field	studies	(Cross	et	al.,	2009;	Cross	et	al.,	2007;	Liu	et	al.,	2012;	Slowik	et	al.,	2010).	694	

Here	it	was	deployed	for	the	first	time	on	an	airborne	platform.	The	LS	module	consists	of	695	

a	 405	 nm,	 continuous	 laser	 beam	 directed	 at	 the	 end	 of	 the	 aerosol	 time-of-flight	 drift	696	

region	 before	 particles	 impact	 on	 the	 vaporizer,	 an	 ellipsoidal	 mirror	 for	 collecting	697	

scattered	light	from	particles	passing	through	the	laser	beam,	and	a	photomultiplier	tube	698	

for	 detecting	 and	measuring	 the	 scattered	 light.	 The	 data	 acquisition	 software	 used	 the	699	

scattered	light	signal	to	trigger	saving	mass	spectra	for	that	individual	particle.		700	

One	 important	 factor	 for	 particle	 detection	 efficiency	 in	 the	 AMS	 instrument	 is	701	

efficient	 evaporation	 after	 particle	 impaction	 on	 the	 vaporizer,	 where	 inefficient	702	

evaporation	 is	 commonly	 referred	 to	 as	 particle	 bounce	 (Matthew	 et	 al.,	 2008;	703	

Middlebrook	 et	 al.,	 2012).	 To	 provide	 a	 direct	 measurement	 of	 this	 factor	 for	 ambient	704	

aerosols,	particles	must	be	large	enough	to	scatter	light	in	the	instrument	(for	the	current	705	

system	~100	nm	in	diameter),	provide	enough	signal	from	the	single	particle	mass	spectra	706	

to	detect	 them,	and	evaporate	 in	 less	 than	a	 few	hundred	µs.	The	LS	module	provides	a	707	

quantitative	 measure	 of	 the	 particles	 that	 are	 not	 detected	 due	 to	 bouncing	 on	 the	708	

vaporizer.	709	

	710	

6.	Carbon	Dioxide	 (CO2)	and	Methane	 (CH4)	 (Picarro):	PI	 Jeff	Peischl,	Thomas	711	

Ryerson	712	

Measurements	 of	 the	 greenhouse	 gases	 carbon	dioxide	 (CO2)	 and	methane	 (CH4)	713	

were	used	to	determine	the	sources	and	magnitudes	of	these	emissions	in	the	Southeast	714	

U.S.	 during	 SENEX.	 CO2	 and	 CH4	 were	 measured	 aboard	 the	 WP-3D	 aircraft	 using	 a	715	
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modified	 commercial	 wavelength-scanned	 cavity	 ring-down	 analyzer	 (Picarro	 1301-m)	716	

(Peischl	 et	 al.,	 2012).	 Atmospheric	 air	 was	 sampled	 through	 a	 3/8”	 OD	 stainless	 steel	717	

rearward	facing	inlet	on	the	WP-3D	and	dried	to	a	dew	point	temperature	of	–78°C	after	718	

passage	 through	 a	 200-strand	 Nafion	 dryer	 and	 a	 dry	 ice	 trap.	 The	 absorption	 cell	719	

pressure	was	controlled	at	140	Torr	(±0.2	Torr	during	smooth	flight,	and	±0.5	Torr	during	720	

typical	boundary	layer	flight	conditions;	all	stated	uncertainties	are	±1σ).		721	

Immediately	 inside	 the	 fuselage,	 two	CO2	and	CH4	calibration	gas	standards	were	722	

regularly	 added	 to	 the	 inlet	 line	 during	 flight	 to	 evaluate	 instrument	 sensitivity.	 The	723	

calibration	standards	bracketed	the	expected	ambient	range	of	each	gas	and	are	known	to	724	

within	±0.07	ppm	CO2	and	±1	ppb	CH4	(all	CO2	and	CH4	mixing	ratios	are	reported	as	dry	725	

air	mole	fractions).	The	calibration	gases	were	added	at	a	flow	rate	sufficient	to	overflow	726	

the	inlet.	These	flight	standard	tanks,	or	secondary	standards,	were	calibrated	before	and	727	

after	 the	 field	project	using	primary	CO2/CH4	 standard	 tanks	 tied	 to	 the	WMO	standard	728	

scale	 from	 the	 Global	 Monitoring	 Division	 (GMD)	 at	 the	 NOAA	 Earth	 System	 Research	729	

Laboratory	 (ESRL).	 A	 third	 calibration	 standard	 (referred	 to	 as	 a	 target)	 was	 regularly	730	

introduced	to	the	inlet	between	calibrations	and	treated	as	an	unknown	to	evaluate	long-731	

term	instrument	performance.	732	

Independent	 of	 the	 target	 retrievals,	 we	 estimated	 a	 total	 accuracy	 in	 the	 CO2	733	

measurement	of	±0.10	ppmv	and	a	total	accuracy	in	the	CH4	measurement	of	±1.2	ppbv	for	734	

20-second	 averages.	 One-second	 precision	 of	 the	 CO2	 measurement	 was	 ±0.10	 ppmv	735	

during	smooth	flight	and	±0.15	ppmv	during	turbulent	flight.	One-second	precision	of	the	736	

CH4	measurement	was	 ±1.5	 ppbv	 during	 smooth	 flight	 and	 ±2.0	 ppbv	 during	 turbulent	737	

flight.	738	

	739	

7.	Carbon	Monoxide	(CO)	and	Sulfur	Dioxide	(SO2):	PI	John	Holloway	740	

The	 CO	 instrument	 was	 contained	 in	 a	 pod	 located	 on	 the	 left	 wing	 inboard	741	

(Holloway	et	al.,	2000).	The	 instrument	consists	of	a	VUV	fluorimeter,	a	vacuum/sample	742	

pump,	compressed	gas	cylinders,	and	a	data	system	and	computer.	The	computer	 in	 the	743	

wing	pod	boots	when	electrical	 power	 is	 supplied	 to	 the	pod.	Data	 acquisition	 software	744	

starts	 automatically.	 Communication	with	 the	 pod	 is	 by	means	 of	 100BASE-T	 Ethernet.	745	

The	 precision	 of	 the	 measurements	 is	 estimated	 to	 be	 2.5%.	 Variability	 in	 the	746	
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determination	of	 zero	 levels	 results	 in	 an	 absolute	uncertainty	 of	 about	 0.5	 ppbv	 in	 the	747	

values	 reported.	The	 field	 standard	was	 compared	 to	NIST	Standard	Reference	Material	748	

(SRM)	2612a	(10	ppmv	nominal	CO	in	air).	The	concentration	of	the	calibration	standard	749	

is	known	to	within	2%.	The	overall	accuracy	of	the	1s	measurements	is	thus	estimated	to	750	

be	5%.	751	

The	SO2	instrument	was	located	in	a	one	bay	rack	inside	the	aircraft.	It	consists	of	a	752	

TECO	model	43C	pulsed	fluorimeter,	an	external	sample	pump,	a	rack	mounted	computer	753	

and	 associated	 data	 system	 interface	 box,	 compressed	 gas	 cylinders	 containing	 zero	 air	754	

and	 a	 10	 ppm	 SO2/N2	 calibration	 standard,	 and	 a	 calibration	 system	 mounted	 on	 the	755	

sample	inlet	(Ryerson	et	al.,	1998).	756	

	757	

8.	Nitrogen	Oxides	and	Ozone	(NOy/O3):	PI	Ilana	Pollack,	Thomas	Ryerson	758	

The	NOAA	NOyO3	4-channel	 chemiluminescence	 (CL)	 instrument	provided	 in-situ	759	

measurements	of	nitric	oxide	(NO),	nitrogen	dioxide	(NO2),	total	reactive	nitrogen	oxides	760	

(NOy),	and	ozone	(O3)	on	the	WP-3D	during	SENEX.	This	instrument	has	flown	on	the	WP-761	

3D,	the	NCAR	Electra,	and	the	NASA	DC-8	research	aircraft	on	multiple	field	projects	since	762	

1995	 (Pollack	 et	 al.,	 2010;	 Ryerson	 et	 al.,	 1999;	 Ryerson	 et	 al.,	 2000).	 It	 provides	 fast-763	

response,	 chemically	 specific,	 high	 precision,	 and	 calibrated	 measurements	 of	 nitrogen	764	

oxides	 and	 ozone	 at	 a	 spatial	 resolution	 of	 better	 than	 50m	 at	 typical	WP-3D	 research	765	

flight	speeds.	766	

Detection	 is	 based	 on	 the	 gas-phase	 CL	 reaction	 of	 NO	with	 O3	 at	 low	 pressure,	767	

resulting	 in	 photoemission	 from	 electronically	 excited	 NO2.	 Photons	 are	 detected	 and	768	

quantified	using	pulse	counting	techniques,	providing	~5	to	10	part-per-trillion	by	volume	769	

(pptv)	precision	at	1	Hz	data	rates.	770	

One	 CL	 channel	 is	 used	 to	 measure	 ambient	 NO	 directly,	 a	 second	 channel	 is	771	

equipped	with	a	high-power	UV-LED	converter	to	photodissociate	ambient	NO2	to	NO,	and	772	

a	third	channel	is	equipped	with	a	heated	gold	catalyst	to	reduce	ambient	NOy	species	to	773	

NO.	Reagent	ozone	 is	added	 to	 these	sample	 streams	 to	drive	 the	CL	reactions	with	NO.	774	

Ambient	O3	is	detected	in	the	fourth	channel	by	adding	reagent	NO.	775	

Instrument	 performance	 is	 routinely	 evaluated	 in	 flight	 by	 standard	 addition	776	

calibrations	delivered	within	a	few	centimeters	of	the	inlet	tips.	The	separate	NO	and	NO2	777	
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sample	 paths,	 detectors,	 and	 inlet	 residence	 times	 are	 identical,	 permitting	 artifact-free	778	

calculation	 of	 ambient	 NO2	 by	 difference	 at	 high	 time	 resolution,	 with	 no	 lagging	 or	779	

smoothing	relative	 to	NO	or	 to	other	 fast-response	measurements	aboard	 the	aircraft.	A	780	

high-power	 UV-LED	 converter	 developed	 in	 our	 laboratory	 provides	 NO2	 conversion	781	

fractions	exceeding	0.6	at	a	converter	sample	residence	time	of	0.11	seconds.	This	offers	a	782	

significant	 advantage	 in	 terms	 of	 NO	 and	 NO2	 spatial	 resolution	 compared	 to	 other	783	

airborne	NO2	 instruments.	The	NOy	 channel	 is	 calibrated	 to	NO,	NO2,	 and	HNO3	 in	 flight	784	

and	the	O3	channel	 is	calibrated	over	an	atmospherically	relevant	range	of	ozone	mixing	785	

ratios	in	flight.	786	

	787	

9.	Proton	transfer	reaction	mass	spectrometer	(PTR-MS):	PI	Martin	Graus,	788	

Carsten	Warneke	789	

Proton-transfer-reaction	mass	 spectrometry	 (PTR-MS)	 (de	 Gouw	 et	 al.,	 2003;	 de	790	

Gouw	 and	 Warneke,	 2007;	 Warneke	 et	 al.,	 2011b)	 allows	 real-time	 measurements	 of	791	

volatile	organic	compounds	(VOCs)	in	air	with	a	high	sensitivity	and	a	fast	time	response.	792	

In	PTR-MS,	proton-transfer	reactions	with	H3O+	ions	are	used	to	ionize	VOCs	in	air:	793	

	 H3O+	+	VOC	→	VOC.H+	+	H2O.	794	

The	air	to	be	analyzed	is	continuously	pumped	through	a	drift	tube	reactor,	where	795	

the	VOCs	are	ionized	in	the	proton-transfer	reactions	with	H3O+,	produced	in	the	hollow-796	

cathode	 discharge	 ion	 source	 (Figure	 A4).	 H3O+	 and	 product	 ions	 are	 detected	 with	 a	797	

quadrupole	 mass	 spectrometer.	 The	 inlet,	 shown	 in	 Figure	 A4,	 is	 pressure	 and	798	

temperature	controlled	and	consists	of	PEEK	and	Teflon	tubing	and	valves.	Diverting	the	799	

air	through	a	catalytic	converter	that	burns	the	VOCs	periodically	zeros	the	instrument.	In	800	

between	 flights,	 sensitivity	 calibrations	 are	 performed	 using	 dynamically	 diluted	 VOC	801	

standards.	802	

VOCs	 with	 a	 higher	 proton	 affinity	 than	 water	 can	 be	 detected	 by	 PTR-MS	 and	803	

usually	 reported	 are:	 methanol,	 acetonitrile,	 acetaldehyde,	 acetone,	 isoprene,	 sum	 of	804	

methyl	vinyl	ketone	and	methacrolein,	methyl	ethyl	ketone,	benzene,	toluene,	sum	of	C8-805	

aromatics,	sum	of	C9-aromatics,	and	sum	of	monoterpenes.	806	
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The	 PTR-MS	 has	 a	 response	 time	 of	 about	 1	 second	 and	 all	 compounds	 are	807	

measured	 for	 1	 second	 every	 17	 seconds	 at	 detection	 limits	 of	 30-200	 pptv	 and	 an	808	

uncertainty	of	20-30%	dependent	on	the	VOC.	The	PTR-MS	was	set-up	for	SENEX	nearly	809	

identical	 to	 what	 was	 used	 in	 many	 previous	 NOAA	 airborne	 field	 campaigns	 such	 as	810	

CALNEX	2010	and	ARCPAC	2008.		811	

	812	

	813	

	814	
	815	
Figure	A4:	Schematic	drawing	of	the	PTR-MS	instrument	and	the	inlet.	816	

	817	

10.	Whole	air	sampler	with	immediate	GC-MS	analysis	(iWAS/GCMS):	PI	818	

Jessica	Gilman,	Brian	Lerner	819	

The	 iWAS/GCMS	 is	designed	 to	 speciate	and	quantify	a	variety	of	VOCs	 including	820	

alkanes,	 alkenes,	 biogenic	 VOCs	 (BVOCs),	 oxygenated	 VOCs	 (OVOCs),	 VOCs	 containing	821	

nitrogen,	 and	 halogenated	 VOCs	 in	 discrete	 air	 samples.	 iWAS/GCMS	 consists	 of	 3	822	

independent	components:	 (1)	onboard	 in-situ	sample	collection	via	72	whole	air	sample	823	

(WAS)	canisters,	consisting	of	six	12-canister	modules,	located	in	AMPS	pod	on	WP-3D,	(2)	824	

in-field	 analysis	 of	WAS	 canisters	 via	 gas	 chromatography-mass	 spectrometry	 (GC-MS),	825	

and	(3)	cleaning	and	conditioning	of	canisters	 for	re-use	on	subsequent	research	 flights.	826	

The	 canister	 design,	 collection,	 and	 conditioning	 protocols	 have	 been	 adopted	 from	 the	827	

NCAR	AWAS	system	(Schauffler	et	al.,	2003).	828	

A	 detailed	 description	 of	 iWAS/GC-MS	will	 be	 presented	 by	 Lerner	 et	 al.	 (2016).	829	

The	onboard	sampling	system	consists	of	a	316	SS	 forward-facing	 inlet,	 a	 stainless	steel	830	

bellows	 compressor	 (Senior	 Aerospace),	 a	 sampling	 manifold,	 and	 72	 electro-polished	831	

stainless	 steel	 canisters	 (1.4	L).	Each	 canister	 is	 isolated	 from	 the	 sample	manifold	by	a	832	

stainless	steel	bellows	valve	actuated	by	a	computer-controlled	pneumatic	valve	system.	833	

The	canisters	may	be	automatically	filled	at	regular	time	intervals	during	aerial	surveys	or	834	
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triggered	manually	for	targeted	plume	analysis.	During	sample	collection,	each	canister	is	835	

pressurized	to	approximately	50	psia	by	the	compressor.	Total	sample	acquisition	time	is	836	

typically	 3-10	 seconds	depending	upon	ambient	 air	 pressure,	which	 varies	with	 aircraft	837	

altitude.	838	

Post-flight,	the	canister	modules	are	removed	from	the	AMPS	pod	and	connected	to	839	

the	 analysis	 system	 via	 1/8”	 silanized	 stainless	 steel	 tubing.	 The	 sample	 manifold	 is	840	

pumped	out	 for	approximately	2	hours	 to	remove	any	residual	water,	 then	 flushed	with	841	

UHP	 nitrogen	 and	 evacuated	 before	 an	 individual	 canister	 is	 opened	 for	 analysis.	 This	842	

sequence	of	flushing	and	pumping	is	repeated	before	each	canister	is	sampled.	843	

Each	canister	is	analyzed	via	gas	chromatography-mass	spectrometry	(GC-MS).	The	844	

custom-built	GC-MS	consists	of	 two	channels	optimized	 for	 light	VOCs	(channel	1,	C2-C6	845	

compounds)	 and	heavier	VOCs	 (channel	2,	 C5-C11	 compounds).	Two	240	 sccm	samples	846	

are	simultaneously	collected	from	each	canister.	Prior	to	sample	trapping,	H2O	is	removed	847	

from	the	sample	stream	via	a	cold	trap	(nominally	-45	and	-35°C,	respectively),	and	CO2	is	848	

removed	from	the	channel	1	sample	via	an	ascarite	scrubber.	VOCs	are	pre-concentrated	849	

via	 cryogenic	 trapping	 at	 temperatures	 of	 -165	 and	 -145°C	 for	 channels	 1	 and	 2,	850	

respectively.	 The	 samples	 are	 analyzed	 sequentially	 with	 a	 porous	 layer	 open	 tubular	851	

(PLOT)	 Al2O3	 column	 and	 a	 mid-polarity	 polysiloxane	 column	 for	 channels	 1	 and	 2,	852	

respectively,	 with	 the	 analyte	 from	 both	 columns	 sent	 to	 a	 single	 quadrupole	 mass	853	

spectrometer	detector	run	in	selective	ion	mode	for	increased	signal-to-noise.	The	entire	854	

sample	pre-concentration	(4	min)	and	separation/analysis/flush	(16	min)	is	automatically	855	

repeated	for	subsequent	canisters.	All	72	canisters	collected	per	flight	were	analyzed	on-856	

site	between	12-100	hours	after	the	aircraft	had	landed.	857	

The	GC-MS	provides	 chemically	detailed	and	highly	 sensitive	measurements	with	858	

detection	limits	in	the	2-10	pptv	range	depending	on	the	VOC.	Each	VOC	is	identified	by	its	859	

chromatographic	 retention	 time	 and	 electron-impact	 mass	 fragmentation	 pattern.	 All	860	

VOCs	 are	 individually	 calibrated	 using	 commercial	 and	 custom-made	 calibration	861	

standards.	For	SENEX,	approximately	20	VOCs	were	quantified	for	each	canister	sample.	A	862	

detailed	description	of	the	iWAS2	will	presented	by	Lerner	et	al.	(2015).	863	

After	the	canisters	are	analyzed,	they	are	prepared	and	conditioned	for	reuse.	Each	864	

canister	is	evacuated	(<10	mTorr)	and	checked	for	leaks.	The	canisters	are	then	heated	to	865	
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75°C	under	vacuum,	then	filled	with	high	purity	nitrogen	and	re-evacuated.	The	nitrogen	866	

flush	process	is	repeated	a	minimum	of	3	times.	Humidified	nitrogen	is	added	during	the	867	

final	flushing	process	in	order	to	passivate	the	interior	surfaces	of	the	canisters.	868	

	869	

11.	Nitric	Acid	(HNO3),	Formic	Acid	(HCOOH)	and	HONO:	PI	Andy	Neuman	870	

HNO3,	 HCOOH,	 and	 HONO	 were	 measured	 by	 chemical	 ionization	 mass	871	

spectrometry	(CIMS)	using	I-	as	a	reagent	ion	(Neuman,	2015).	The	instrument	included	a	872	

heated	inlet	to	deliver	ambient	air	to	the	instrument,	a	flow	tube	where	ions	and	ambient	873	

air	reacted,	and	a	quadrupole	mass	spectrometer	for	ion	detection.	874	

The	 70-cm	 long	 inlet	 was	 housed	 in	 an	 aerodynamic	 winglet	 that	 was	875	

perpendicular	to	the	aircraft	 fuselage.	The	inlet	was	temperature	controlled	to	40	C,	and	876	

the	 total	 airflow	 through	 the	 inlet	was	 8	 slm	 (Neuman	 et	 al.,	 2002).	 An	 all-Teflon	 valve	877	

located	at	the	inlet	tip	was	used	to	determine	the	instrument	background	signal.	Every	30	878	

minutes,	 the	valve	was	actuated	so	 that	air	was	sampled	 for	1.5	min	 through	a	charcoal	879	

filter	that	removed	HNO3,	HCOOH,	and	HONO	from	the	air	stream.	The	signal	during	these	880	

background	measurements	came	from	the	instrument	and	was	subtracted	from	the	total	881	

signal	to	determine	ambient	mixing	ratios.	The	inlet	also	included	a	port	at	the	tip	where	882	

calibration	gas	was	added.	HNO3	and	HCOOH	at	ppbv-levels	were	added	to	the	inlet	tip	in-883	

flight	for	2	min	approximately	every	hour.	The	HNO3	and	HCOOH	sources	were	calibrated	884	

using	permeation	 tubes.	After	each	 flight,	 the	permeation	 tubes	were	 removed	 from	 the	885	

aircraft	 and	 kept	 under	 constant	 flow	 and	 temperature,	 and	 the	 output	 from	 the	 HNO3	886	

calibration	source	was	measured	by	UV	optical	absorption	(Neuman	et	al.,	2003).	Mixing	887	

ratios	were	 determined	 from	 these	 standard	 addition	 calibrations.	 The	 instrument	was	888	

calibrated	to	HONO	in	the	 laboratory	prior	 to	 the	study,	using	HONO	produced	from	the	889	

reaction	of	HCl	with	humidified	NaNO3	(Roberts	et	al.,	2010).	890	

Ambient	air	 from	 the	 inlet	was	mixed	with	 ions	 in	a	 reduced	pressure	 flow	 tube.	891	

Approximately	1.6	slm	of	the	total	8	slm	inlet	flow	was	admitted	through	an	orifice	into	a	892	

flow	tube	at	20	Torr	and	20	C.	The	reagent	ions	were	made	in	flight	by	flowing	2	slm	N2	893	

doped	with	methyl	iodide	through	a	radioactive	210Po	ion	source.	This	ions	and	ambient	894	

air	reacted	for	approximately	200	ms	in	the	flow	tube.	Since	HNO3	and	HCOOH	are	more	895	
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sensitive	 to	water	 clustered	with	 I-,	water	was	 added	 to	 the	 flow	 tube	 to	 prevent	 large	896	

changes	in	sensitivity	with	ambient	water	(Neuman	et	al.,	2010;	Zheng	et	al.,	2011).	897	

The	 quadrupole	 mass	 spectrometer	 was	 programmed	 to	 integrate	 signals	 from	898	

each	of	the	product	and	reagent	ions	for	a	fraction	of	a	second,	in	a	sequence	that	repeated	899	

every	second.	As	a	result,	an	independent	measurement	for	each	compound	was	obtained	900	

once	per	second.	Several	times	per	flight	the	mass	spectrometer	was	programmed	to	scan	901	

over	the	entire	mass	range	(10	to	250	amu)	as	a	diagnostic	of	the	ion	chemistry	stability.	902	

During	instrument	calibrations,	zeroes,	and	mass	scans,	ambient	measurements	were	not	903	

reported.	904	

Measurement	 accuracy	 was	 determined	 from	 the	 variability	 of	 the	 instrument	905	

response	 to	 in-flight	 calibrations	 and	 from	 the	 uncertainty	 in	 the	 emission	 from	 the	906	

calibration	 sources.	 HNO3	 was	 measured	 with	 25	 pptv	 precision	 (for	 1	 s	 data)	 and	 an	907	

accuracy	of	±(20%	+	50	pptv).	HCOOH	was	measured	with	40	pptv	precision	(for	1	s	data)	908	

and	an	accuracy	of	±(20%	+	120	pptv).	HONO	was	measured	with	25	pptv	precision	(for	1	909	

s	 data)	 and	 an	 accuracy	 of	 ±(40%	 +	 30	 pptv).	 The	 two	 accuracy	 terms	 represent	910	

uncertainties	in	the	in-flight	calibrations	(%)	and	instrumental	background	measurements	911	

(pptv).	912	

	913	

12.	Ammonia	(NH3):	PI	John	Nowak	914	

Gas-phase	 NH3	 was	 measured	 during	 SENEX	 with	 a	 CIMS	 utilizing	 protonated	915	

acetone	 dimer	 ((C3H6O)H+(C3H6O))	 ion	 chemistry	 as	 described	 by	 Nowak	 et	 al.	 (2007).	916	

Previously,	this	instrument	was	successfully	deployed	aboard	the	WP-3D	during	the	2004	917	

New	England	Air	Quality	Study	(NEAQS)	(Nowak	et	al.,	2007),	the	2006	Texas	Air	Quality	918	

Study	 (TexAQS	 2006)	 (Nowak	 et	 al.,	 2010),	 and	 the	 2010	 CalNex	 study	 (Nowak	 et	 al.,	919	

2012).	The	inlet,	 low-pressure	flow	tube	reactor,	and	quadrupole	mass	spectrometer	are	920	

similar	to	the	airborne	HNO3-CIMS	described	above.	921	

In-flight	 standard	 addition	 calibrations	 and	 measurements	 of	 instrumental	922	

background	signals	were	routinely	performed	 to	determine	 the	sensitivity,	 stability,	and	923	

time	response	of	the	instrument.	Standard	addition	calibrations	with	13	ppb	of	NH3	were	924	

performed	 3-5	 times	 a	 flight	 with	 the	 output	 of	 a	 thermostated,	 flow-controlled,	925	

pressurized	 NH3	 permeation	 device	 (Kin-tek,	 La	 Marque,	 TX).	 The	 stability	 of	 the	926	
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permeation	 device	 output	was	maintained	 between	 flights	 by	 removing	 the	 permeation	927	

oven	from	the	aircraft	and	connecting	it	to	a	ground	support	system	where	the	same	flow	928	

and	 temperature	 conditions	were	maintained.	The	output	of	 the	NH3	permeation	device	929	

was	 quantified	 by	 UV	 absorption	 at	 184.95	 nm	 on	 the	 ground	 between	 each	 flight	930	

(Neuman	et	al.,	2003)	and	varied	 less	 than	10%	over	 the	duration	of	 the	study.	 In-flight	931	

instrument	sensitivity	to	NH3	was	1	ion	counts/s/ppt	(Hz/ppt)	for	1	x	106	Hz	of	reagent	932	

ion	signal	as	determined	by	the	flow	conditions.	933	

The	 instrument	 background	 was	 determined	 in-flight	 by	 periodically	 pulling	934	

ambient	 air	 through	 a	 scrubber	 filled	 with	 commercially	 available	 silicon	 phosphates	935	

(Perma	Pure,	Inc).	For	most	flights,	the	absolute	background	level	ranged	from	0.1	to	0.4	936	

ppb.	However,	due	to	reduced	flow	conditions,	on	the	June	11,	12,	16,	and	18	flights,	the	937	

observed	 absolute	 background	 levels	 were	 higher,	 ranging	 from	 1.8	 to	 2.1	 ppb.	 During	938	

most	flights,	the	difference	between	consecutive	backgrounds	was	0.02	to	0.07	ppb.	Again,	939	

for	the	flights	of	June	11,	12,	16,	and	18,	the	difference	between	consecutive	backgrounds	940	

was	larger,	ranging	from	0.3	to	0.5	ppb.	The	instrument	background	signal	is	determined	941	

by	 interpolating	between	consecutive	background	measurements.	Ambient	mixing	ratios	942	

were	derived	by	 subtracting	 the	 instrument	background	 from	 the	 total	 signal.	Typically,	943	

the	overall	1	σ	uncertainty	 for	 the	NH3	measurement	was	estimated	 to	be	±(25%	+0.07	944	

ppb)	+	0.02	ppbv	for	a	1	s	measurement	with	larger	estimates	for	the	June	11,	12,	16,	and	945	

18	flights.	946	

The	instrument	time	response	to	ambient	variability	was	determined	from	the	NH3	947	

signal	 decay	 following	 the	 removal	 of	 the	 calibration	 gas.	 These	 data	 were	 fitted	 with	948	

exponential	decay	curves,	as	described	by	Nowak	et	al	(2007).	On	average	the	2	e-folding	949	

signal	decay	time	from	a	triple	exponential	fit	ranged	from	1	to	2	s	with	typically	at	least	950	

80	%	of	 the	 signal	 decay	occurring	within	1	 s.	 Therefore,	 1	 s	was	used	 as	 the	observed	951	

instrument	time	response	during	SENEX	2013	and	in	the	data	archive.	1	s	instrument	time	952	

response	corresponds	to	a	spatial	resolution	of	~100	m	at	typical	WP-3D	research	flight	953	

speeds.	954	

	955	

13.	PAN:	PI	Jim	Roberts,	Patrick	Veres	956	
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Acyl	 peroxynitrates,	 (PANs),	 and	nitryl	 chloride	 (ClNO2)	were	measured	onboard	957	

the	 WP-3D	 during	 SENEX	 using	 a	 thermal-decomposition	 chemical	 ionization	 mass	958	

spectrometer	similar	to	the	instrument	originally	described	by	Slusher	et	al.	(2004).	The	959	

detection	principle	of	PANs	is	thermal	decomposition	at	150°C	followed	by	reaction	of	the	960	

resulting	acyl	peroxy	radicals	with	iodide	and	iodide	water	cluster	ions	(I-	+	I[H2O]-)	in	an	961	

ion	flow	tube	to	produce	a	stable	carboxylate	[RC(O)O-]	ion.	The	carboxylate	ions	are	then	962	

measured	with	 a	 quadrupole	mass	 spectrometer.	 Nitryl	 chloride	was	 detected	 as	 either	963	

ICl-	or	IClNO2-	after	reaction	with	I-	+	I[H2O]-.	964	

The	instrument	flow	configuration	used	for	PANs	was	based	on	that	described	by	965	

Slusher	et	al	[2004]	with	some	modifications.	Ambient	air	was	sampled	from	outside	the	966	

aircraft	 through	 a	 6.3	mm	OD	 PFA	 tube,	 temperature	 controlled	 at	 30°C,	 inside	 a	 small	967	

winglet	that	extended	approximately	37cm	from	the	skin	of	the	aircraft.	The	airflow	was	968	

then	directed	to	the	inlet	system	of	the	instrument	through	a	9mm	OD	PFA	tube	at	cabin	969	

temperature.	The	inlet	system	consisted	of	a	pair	of	PFA	valves,	configured	such	that	the	970	

air	flow	can	be	periodically	directed	through	a	zeroing	loop	consisting	of	a	1.5m	length	of	971	

6.3mm	OD	stainless	steel	tube	held	at	225°C,	sufficient	to	thermally	decompose	essentially	972	

all	 the	PAN	compounds	 in	 the	sample	stream,	and	approximately	95%	of	ClNO2.	A	small	973	

flow	of	13C-labeled	PAN	was	added	through	a	normally-open	port	of	a	3-way	valve	(Zheng	974	

et	 al.,	 2011).	 The	 valve	 permitted	 the	 labeled	 standard	 to	 be	 switched	 out	 of	 line	975	

periodically	to	determine	instrument	backgrounds,	and	to	check	for	cross-sensitivities	at	976	

other	masses	due	to	proton	transfer	chemistry	involving	acetate	ions	(Veres	et	al.,	2008).	977	

The	 airflow	 then	 passed	 through	 a	 pressure	 reduction	 pinhole	 into	 a	 heated	 zone	978	

consisting	of	25cm	long	section	of	9mm	OD	FEP	tubing	held	at	150°C.	The	exit	of	this	tube	979	

was	connected	to	the	ion	flow	tube	via	another	stainless	steel	pinhole.	The	ion	flow	tube	980	

was	operated	at	a	pressure	of	25	Torr,	controlled	by	bleeding	cabin	air	into	the	pump	line	981	

with	a	pressure	controller	(MKS	640).	Ions	were	introduced	into	the	flow	tube	by	passing	982	

2	SLPM	of	3ppmv	methyl	iodide	through	a	210Po	ionizer.	A	small	flow	of	N2	saturated	with	983	

water	was	added	to	the	front	of	the	ion	flow	tube,	in	order	to	keep	the	flow	tube	humidity	984	

above	the	thresholds	at	which	the	ion	chemistry	is	dominated	by	I[H2O]-	clusters	(Kercher	985	

et	al.,	2009;	Mielke	et	al.,	2011;	Slusher	et	al.,	2004;	Zheng	et	al.,	2011).	986	
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The	 instrument	 was	 operated	 in	 selected	 ion	mode	 switching	 among	 10	 ions	 in	987	

succession,	every	2	seconds,	dwelling	on	each	one	for	0.1sec	in	the	case	of	I-	and	0.2	sec	988	

for	 the	 other	 9.	 The	 inlet	 operation	 sequence	 provided	 a	 zero	 lasting	 30	 sec	 every	 10	989	

minutes.	 In	 addition,	 the	 labeled	 standard	 was	 turned	 off	 for	 30	 sec	 every	 10	 min,	 5	990	

minutes	apart	from	the	zeros.	991	

On-line	 calibration	 of	 the	 instrument	 for	 PANs	 was	 accomplished	 through	 the	992	

constant	 addition	 of	 13C2-labelled	 PAN	 that	 is	 produced	 in	 a	 pressure-controlled	993	

photosource	similar	to	that	described	by	Zheng	et	al	(2011).	PAN	was	produced	with	an	994	

efficiency	 of	 93±5%	 from	 a	 nitric	 oxide	 standard	 as	 determined	 from	measurements	 of	995	

NOx	 and	 NOy	 using	 the	 CRDS	 instrument.	 The	 other	 PAN	 compounds	 were	 calibrated	996	

relative	 to	 this	photosource	before	and	after	 the	project	with	 the	methods	described	by	997	

Veres	and	Roberts	(2015).	Nitryl	chloride	was	calibrated	using	a	portable	source	that	uses	998	

the	 reaction	 of	 molecular	 chlorine	 (Cl2)	 with	 sodium	 nitrite	 (NaNO2)	 as	 described	 by	999	

Thaler	et	al.	(2011)	with	a	the	output	of	the	source	calibrated	by	thermal	decomposition	at	1000	

350°C	and	detection	by	NO2	using	CRDS	as	described	by	Wild	et	al.	(2014).	1001	

The	propagated	uncertainties	in	the	13C	PAN	calibration,	flows,	and	instrument	zero	1002	

determinations	 result	 in	an	overall	 accuracy	 for	PAN	measurements	of	±(15%	+	5pptv),	1003	

and	±(20%	+	5pptv)	for	the	other	PAN	species.	The	uncertainty	of	ClNO2,	measured	at	the	1004	

ICl-	mass	was	±(30%	+	25pptv).	Roiger	et	al.	(2011)	have	pointed	out	that	the	use	of	a	13C	1005	

PAN	standard	for	measuring	native	PAN	at	mass	59	requires	a	correction	for	the	natural	1006	

abundance	 of	 heavy	 isotopes.	 Since	 the	 13C	 labeled	 acetone	 used	 for	 the	 photosource	 is	1007	

rated	at	99%	purity	per	carbon,	the	corresponding	correction	for	our	PAN	standard	would	1008	

be	about	3%	and	we	chose	not	to	correct	our	ambient	PAN	for	heavy	isotopes.	Phillips	et	al.	1009	

(2013)	have	observed	peroxyacetic	acid	conversion	to	acetate	in	their	PAN	CIMS.	Several	1010	

tests	 before	 and	 during	 SENEX	were	 performed	 to	 explore	whether	 our	 PAN	 CIMS	 had	1011	

similar	 sensitivity.	 Cold	 inlet	 (i.e.	 no	 thermal	 decomposition),	 NO	 addition	 to	 titrate	1012	

CH3C(O)OO	 radicals	 and	possible	 signal	modulation	 at	 carboxylate	masses	when	 the	 13C	1013	

PAN	standard	is	switched	out	all	indicated	no	significant	signals	due	to	peroxyacids.	1014	

	1015	

14.	 Multifunctional	 Organic	 Molecules	 and	 Inorganics	 by	 I-CIMS:	 PI	 Joel	 A.	1016	

Thornton,	Felipe	D.	Lopez-Hilfiker,	Ben	H.	Lee	1017	
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The	instrument	used	consisted	of	a	reduced-pressure	ion−molecule	reaction	(IMR)	1018	

region,	 coupled	 to	 an	 atmospheric	 pressure	 interface	 HR-ToF-MS	 (Tofwerk	 AG,	 Thun,	1019	

Switzerland)	(Lee	et	al.,	2014).	1020	

Ambient	 air	 is	 drawn	 through	 a	 critical	 orifice	 at	 2.0	 standard	 liters	 per	minute	1021	

(slpm)	 into	the	IMR,	which	 is	held	at	90	mbar	by	means	of	a	scroll	pump	(Agilent	 IDP3)	1022	

and	 a	 custom	 servo-controlled	 vacuum	 valve	 used	 to	 continuously	 regulate	 pumping	1023	

speed.	The	pressure	varies	by	<1%	even	as	ambient	pressure	changes	by	factors	of	5.	The	1024	

IMR	temperature	is	controlled	to	within	0.2	°C	at	a	set	point	between	ambient	and	40	°C	1025	

depending	 upon	 application.	Up	 to	 two	 commercial	 radioactive	 ion	 sources	 (Po-210,	 10	1026	

mCi,	NRD)	oriented	90°	apart	and	orthogonal	 to	 the	 ion–molecule	reaction	mixture	 flow	1027	

can	 be	 used	 for	 switching	 between	 positive	 and	 negative	 reagent	 ions.	 The	 IMR	 also	1028	

contains	 a	 diffusion	 cell	 to	 continuously	 deliver	 calibration	 compounds	 for	 converting	1029	

measured	ion	flight	times	into	m/Q.	1030	

Iodide	 ions	 are	 generated	 by	 passing	 a	 2	 slpm	 flow	of	 ultrahigh	purity	 (UHP)	N2	1031	

over	a	permeation	tube	filled	with	methyl	iodide	and	then	through	the	Po-210	ion	source	1032	

into	the	IMR.	The	ionizer	and	sample	flows	mix	and	interact	for	∼120	ms	until	a	fraction	is	1033	

sampled	through	an	orifice	into	a	4-stage	differentially	pumped	chamber	housing	the	HR-1034	

ToF-MS.	The	first	stage	is	held	at	2	mbar	by	a	molecular	drag	pump	(Alcatel	MDP	5011),	1035	

and	the	second	stage	is	held	at	0.01	mbar	by	a	split-flow	turbo	molecular	pump	(Pfeiffer).	1036	

Two	quadrupole	 ion	 guides	 transmit	 the	 ions	 through	 these	 two	 stages	while	providing	1037	

collisional	cooling	and	thus	energetic	homogenization	of	 the	 ions	as	 they	enter	 the	 third	1038	

extractor	region.	In	the	third	and	final	stages,	additional	optics	further	focus	the	ions	prior	1039	

to	being	orthogonally	pulsed	at	22.22	kHz	 into	 the	drift	 region	where	 their	 arrival	 time	1040	

after	a	V-mode	trajectory	is	detected	with	a	pair	of	microchannel	plate	detectors	(Photonis	1041	

Inc.,	U.S.A.).	1042	

Minimizing	 sampling	 losses	 of	 low	 volatility	 species	 is	 a	 priority.	 Ambient	 air	 is	1043	

drawn	 at	 22	 slpm	 through	 a	 72	 cm	 long	 1.6	 cm	 inner	 diameter	 polytetrafluoroethylene	1044	

(PTFE)	tubing	by	a	dedicated	scroll	pump	(Agilent	IDP3).	The	first	25	cm	of	the	inlet	tube	1045	

is	housed	in	an	aerodynamic	winglet	that	extends	outside	of	the	boundary	layer	of	the	WP-1046	

3D	aircraft.	We	estimate	an	inlet	residence	time	of	approximately	0.4	s	at	1013	hPa	while	1047	

maintaining	 laminar	 flow	(Re	∼1900).	A	small	 fraction	of	 the	centerline	 flow	(2	slpm)	 is	1048	
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sampled	 through	 a	 conical-shaped	 critical	 orifice	 into	 the	 IMR,	 while	 the	 remainder	 is	1049	

exhausted	 through	 four	 radially	 symmetric	 ports	 located	 downstream	 and	 around	 the	1050	

raised	 sampling	 orifice.	 The	 inlet	 is	 heated	 to	 40	 °C	 to	 minimize	 condensation	 on	 the	1051	

tubing	surface	and	to	maintain	a	constant	sampling	environment	under	rapidly	evolving	1052	

outside	and	cabin	conditions.	1053	

The	 instrument	 background	 signal	 is	 established	 by	 introducing	 dry	 UHP	 N2	1054	

directly	in	front	of	the	critical	orifice	every	15	minutes	to	displace	the	incoming	ambient	1055	

air	during	flight.	This	addition	is	achieved	by	a	servo-controlled,	7	cm	(2.8	in.)	long	0.3	cm	1056	

(1/8	 in.)	 diameter	 stainless	 steel	 probe	 that	when	 actuated,	 enters	 from	 the	 side	 of	 the	1057	

inlet	 at	 a	 45°	 angle	 and	 is	 positioned	 directly	 upstream	 of,	 but	 not	 in	 contact	with,	 the	1058	

sampling	cone.	Ambient	air	is	rejected	from	the	IMR	by	overblowing	the	sampling	orifice	1059	

with	N2	(∼3	slpm).	When	not	in	use,	the	probe	is	retracted	so	that	it	resides	outside	of	the	1060	

sample	 streamline.	 Instrument	 sensitivity	 dependence	 on	 water	 vapor	 pressure	 is	1061	

accounted	for,	but	given	that	the	sensitivity	for	most	organic	compounds	is	higher	in	dry	1062	

air,	the	measured	background	is	more	than	likely	an	upper	limit.	1063	

The	 stability	 of	 the	 instrument	 is	 determined	 by	 continuously	 delivering	 13C-1064	

labeled	 formic	 acid,	 13CH2O2,	 through	 a	 30	 gauge	 1.5	 cm	 long	 needle	 bored	 through	 the	1065	

PTFE	inlet	near	the	inlet	entrance.	The	13CH2O2	(Cambridge	Isotopes)	was	contained	in	a	1066	

custom-built	PTFE	permeation	 tube,	held	at	 constant	 temperature	 (40	 °C)	and	pressure.	1067	

The	 permeation	 rate	 was	 determined	 gravimetrically	 and	 compared	 to	 independently	1068	

verified	 12CH2O2	 permeation	 tubes	 (KIN-TEK).	 Any	 drift	 in	 the	 instrument	 sensitivity	1069	

measured	 by	 the	 I(13CH2O2)−	 ion	 signal,	 not	 due	 to	 ambient	 water	 vapor,	 is	 similarly	1070	

applied	to	all	other	species	using	relative	sensitivities	which	have	been	determined	in	the	1071	

laboratory.	1072	

	1073	

15.	Cavity	enhanced	absorption	spectroscopy	for	glyoxal	(ACES):	PI	Kyung-Eun	1074	

Min,	Rebecca	Washenfelder,	Steve	Brown	1075	

Glyoxal	 is	 one	 of	 the	 key	 reactive	 intermediates	 in	 the	 atmospheric	 oxidation	 of	1076	

hydrocarbons,	particularly	biogenic	VOCs	and	aromatic	compounds	(Fu	et	al.,	2008).	It	is	1077	

the	simplest	α-dicarbonyl	species,	and	it	can	serve	either	as	a	source	of	radicals	through	1078	
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its	 photolysis	 or	 as	 a	 source	 of	 secondary	 organic	 aerosol	 through	 its	 heterogeneous	1079	

uptake	 and	 subsequent	oligomerization.	 It	 also	has	 strong	visible	 absorption	bands	 that	1080	

facilitate	its	detection	via	spectroscopic	methods.	Cavity	enhanced	spectroscopy,	CES,	is	a	1081	

recently	 developed	 technique	 for	 high-sensitivity,	 spectrally	 resolved	 measurements	1082	

(Fiedler	et	al.,	2003).	As	shown	in	Figure	A5,	it	employs	a	broadband	light	source,	such	as	a	1083	

light	emitting	diode	(LED),	an	optical	cavity	and	a	grating	spectrometer.	The	technique	can	1084	

achieve	 optical	 path	 lengths	 of	 several	 tens	 of	 kilometers	 for	 measurements	 of	1085	

atmospheric	trace	gases	at	sub	part	per	billion	levels.	1086	

The	CES	technique	has	been	demonstrated	for	measurement	of	glyoxal	in	both	the	1087	

laboratory	(Washenfelder	et	al.,	2008)	and	in	the	field	during	CalNex	2010	(Washenfelder	1088	

et	 al.,	 2011b;	 Young	 et	 al.,	 2012).	 Ground	 based	 CES	 measurements	 during	 the	 CalNex	1089	

2010	campaign	also	included	NO2	and	HONO	(Young	et	al.,	2012).	1090	

For	SENEX,	a	new	aircraft	version	of	the	instrument	achieved	robust	performance	1091	

using	 a	 custom	 optical	 mounting	 system,	 high	 power	 LEDs	 with	 electronic	 on/off	1092	

modulation,	 state-of-the-art	 cavity	mirrors,	 and	materials	 that	minimize	 analyte	 surface	1093	

losses	 (Min	et	al.,	2015).	The	aircraft	 instrument	 is	 called	 the	Airborne	Cavity	Enhanced	1094	

Spectrometer	(ACES).	The	ACES	instrument	has	two	channels	with	wavelength	coverage	from	1095	

361–389	 nm	 and	 438–468	 nm.	 The	 wavelength	 range	 is	 determined	 by	 the	 LED	 spectral	1096	

radiance,	 the	 center	 wavelength	 and	 bandwidth	 of	 the	 cavity	 mirrors,	 as	 well	 as	 the	1097	

wavelength-dependent	 absorption	 features	 of	 target	 gases.	 HONO	 and	 NO2	 are	 detected	 at	1098	

361-389	 nm,	 while	 CHOCHO,	 CH3COCHO,	 NO2,	 and	 H2O	 are	 detected	 at	 438-468	 nm.	 The	1099	

demonstrated	precision	(2σ)	for	retrievals	of	CHOCHO,	HONO	and	NO2	are	34,	350	and	80	1100	

pptv	in	5	s	(Min	et	al.,	2015).	The	accuracy	is	5.8%,	9.0%	and	5.0%,	limited	mainly	by	the	1101	

available	absorption	cross	section	(Min	et	al.,	2015).		1102	

	1103	

	1104	
Figure	A5.	Simplified	schematic	of	the	broadband	CES	instrument	1105	

	1106	

LED$ Op'cs$ Mirrors$/$Op'cal$Cavity$ Spectrometer$+$Camera$
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16.	Cavity	Ring	Down	Spectroscopy	(CRDS):	PI	Peter	Edwards,	Steve	Brown	1107	

Cavity	ring-down	spectroscopy	(CRDS)	is	a	high	sensitivity	optical	technique	for	the	1108	

measurement	 of	 trace	 gas	 concentration	 applicable	 to	 nitrogen	 oxides.	 The	NOAA	CRDS	1109	

instrument	for	nitrogen	oxides	and	ozone	is	based	on	two	visible	diode	lasers	at	662	nm	1110	

(for	 detection	 of	 NO3)	 and	 405	 nm	 (for	 detection	 of	 NO2)	 (Wagner	 et	 al.,	 2011b).	 Inlet	1111	

conversions	allow	the	measurement	of	additional	species.	Figure	A6	shows	a	schematic	of	1112	

the	instrument.	1113	

One	662	nm	channel	provides	a	direct	measurement	of	NO3,	while	a	second	662	nm	1114	

channel	 with	 a	 heated	 inlet	 provides	 a	 measurement	 of	 the	 sum	 of	 NO3	 and	 N2O5	 via	1115	

thermal	dissociation	of	N2O5	 to	NO3.	Both	 channels	 are	 zeroed	by	 addition	of	NO	 to	 the	1116	

inlet,	which	reacts	rapidly	with	NO3,	but	not	with	other	species	that	absorb	662	nm	light,	1117	

such	 as	 ambient	 NO2,	 O3	 or	water	 vapor	 (Dubé	 et	 al.,	 2006).	 The	 NO2	 produced	 in	 this	1118	

reaction	has	an	absorption	cross	section	nearly	104	times	smaller	than	NO3	and	therefore	1119	

does	not	interfere	with	the	NO3	measurement.	1120	

There	are	three	channels	at	405	nm.	The	first	detects	NO2	directly	by	total	optical	1121	

extinction	at	this	wavelength,	which	is	specific	to	NO2.	The	second	channel	has	an	addition	1122	

of	 excess	 O3	 to	 convert	 NO	 to	 NO2	 to	 measure	 total	 NOx	 (=NO	 +	 NO2)	 via	 reaction	 (1)	1123	

(Fuchs	et	al.,	2009).	1124	

	 NO		+		O3		→		NO2		+		O2	 (1)	1125	

A	third	405	nm	channel	has	an	addition	of	excess	NO	to	quantitatively	convert	O3	to	1126	

NO2	 to	measure	 total	Ox	 (=O3	+	NO2),	 also	via	 reaction	 (2)	 (Washenfelder	 et	 al.,	 2011a).	1127	

Differencing	between	the	NOx,	Ox	channels	and	the	NO2	channel	provides	measurement	of	1128	

NO	and	O3,	respectively.	The	zero	for	the	405	nm	channel	consists	of	addition	of	clean	air	1129	

to	 the	 inlet.	 All	 channels	 operate	 at	 a	 repetition	 rate	 of	 4	 Hz.	 During	 SENEX,	 the	 1	 Hz	1130	

measurement	 precision	 (2σ)	was	 3	 pptv	 for	 NO3	 and	 N2O5.,	measurement	 precision	 for	1131	

NO2	and	O3	was	<50	pptv,	but	the	uncertainty	in	the	zero	for	these	species	was	200	pptv	1132	

due	 to	 an	 uncertainty	 in	 the	 relative	 humidity	 of	 the	 scrubbed	 air	 used	 for	 zeroing	 the	1133	

instrument.	 The	 precision	 of	 the	 NO	 measurement	 was	 significantly	 degraded	 during	1134	

SENEX	 due	 to	 a	 mechanical	 instability	 in	 the	 optical	 alignment	 of	 this	 cavity.	 This	1135	

compound	was	not	reported	for	the	majority	of	flights,	but	had	a	precision	of	1	ppbv	for	1136	
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the	 small	 number	 of	 flights	 with	 large	 power	 plant	 plume	 intercepts	 containing	1137	

measurable	NO.	1138	

	1139	
Figure	A6.	Schematics	of	the	nitrogen	oxide	CRDS	instrument.	1140	

	1141	

17.	 In	 situ	Airborne	Formaldehyde	 (ISAF):	PI	Frank	Keutsch,	Thomas	Hanisco,	1142	

Glenn	Wolfe	1143	

The	 NASA	 GSFC	 In	 Situ	 Airborne	 Formaldehyde	 (ISAF)	 instrument	 uses	 laser	1144	

induced	 fluorescence	 (LIF)	 to	 provide	 fast,	 sensitive	 observations	 of	 formaldehyde	1145	

(HCHO)	 throughout	 the	 troposphere	 and	 lower	 stratosphere	 (Cazorla	 et	 al.,	 2015).	 A	1146	

particle-rejecting	 inlet	 draws	 sample	 air	 into	 the	 low-pressure	 detection	 region	 at	 ~3	1147	

standard	liters	per	minute.	A	pulsed	tunable	fiber	 laser	(NovaWave	TFL)	excites	a	single	1148	

rotational	 transition	 of	 the	 A −	 X	 band	 at	 353.16	 nm,	 and	 the	 resulting	 fluorescence	 is	1149	

detected	 with	 a	 photon	 counting	 photo	 multiplier	 tube.	 Dithering	 the	 laser	 on	 and	 off	1150	

resonance	 with	 the	 rotational	 feature	 provides	 a	 continuous	 measure	 of	 spectroscopic	1151	

background	 and	 greatly	 reduces	 the	potential	 for	measurement	 artifacts.	 The	difference	1152	

between	 power-normalized	 on-	 and	 off-resonance	 signals	 is	 proportional	 to	 the	mixing	1153	

ratio	of	HCHO.	Laser	wavelength	 is	monitored	via	a	 separate	 reference	 cell	 containing	a	1154	

high	concentration	of	HCHO.	1155	

The	sensitivity	of	the	LIF	technique	is	dependent	on	laser	power	and	the	pressure	1156	

in	 the	 detection	 cell.	 At	 10	mW	 and	 100	mbar,	 the	 detection	 limit	 is	 ~36	 pptv	 for	 1	 s	1157	

integration	and	S/N	=	2.	The	nominal	sampling	frequency	is	10	Hz,	and	mixing	ratios	are	1158	
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typically	 reported	 at	 1	 Hz.	 The	 instrument	 was	 calibrated	 pre-	 and	 post-mission	 with	1159	

standard	addition	of	formaldehyde	gas	mixtures.	The	1-σ	accuracy	of	the	measurement	is	1160	

±10%.	1161	

	1162	

	1163	
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Tables	1172	
	1173	
Table	1:	Standard	NOAA	WP-3D	provided	parameters	1174	
	1175	

Aircraft 
Parameters 

Technique Units Uncertainty 

aircraft 
position 

GPS latitude 
GPS longitude 
GPS altitude 

pressure altitude 
radar altitude above ground 

deg 
deg 
m 
m 
m 

±16m 
±16m 
±16m 
±10m 

±15m or 1-2% 
aircraft 

meteorology 
ambient temperature 

dew point temperature 
TDL dew point temperature 

H2O mixing ratio* 
potential temperature 

relative humidity* 
static pressure 

vertical wind speed 
wind direction 

wind speed 

deg C 
deg C 
deg C 
g/kg 

deg K 
% 
mb 
m/s 
deg 
m/s 

±0.5C 
±0.5C 

5% 
5% 

±0.5K 
±5% 

±2.2mb 
±0.5m/s 

5 deg 
1 m/s 

aircraft 
miscellaneous 

attack angle 
cabin pressure 
ground speed 

heading 
pitch angle 
roll angle 
slip angle 

true air speed 

deg 
mb 
m/s 
deg 
deg 
deg 
deg 
m/s 

±0.2 deg 
N/A 

±3.4m/s 
±0.5 deg 

±0.05 deg 
±0.05 deg 
±0.2 deg 
±0.5 m/s 

*	H2O	mixing	ratio	and	relative	humidity	are	derived	from	dew	point	temperature	1176	
1177	
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Table	2:	Flight	descriptions	for	the	NOAA	WP-3D	daytime	flights	in	the	SE	US	1178	
	1179	
Flight Date 

in 2013 
Day of the 

week 
Description Investigated 

Emission Source 
5/29 Wednesday Testflight in Florida 

Jacksonville 
St John's River 

biogenic 
urban 

power plant 
5/31 Friday Testflight in Florida 

Jacksonville 
St John's River 

biogenic 
urban 

power plant 
6/03 Monday Transfer Tampa to Smyrna 

Birmingham 
EC Gaston, Johnsonville, Cumberland, Colbert 

Centreville spiral 

 
urban 

power plant 
coal mine 

6/11 Tuesday Centreville 
Birmingham west to east 

EC Gaston 

 
urban 

power plant 
6/12 Wednesday Atlanta west to east 

Scherer, Bowen, Yates, Wansley, Harlee Branch 
urban 

power plant 
6/16 Sunday Atlanta southwest to northeast on weekend 

Scherer, Bowen, Yates, Wansley, Harlee Branch 
paper mills, landfills 

poultry farming 

urban 
power plant 

point sources 
agriculture 

6/18 Tuesday Aborted flight, circled over Franklin  
6/22 Saturday Birmingham and Atlanta west to east 

Centreville 
EC Gaston 

coal mines, land fills, paper mills 

urban 
 

power plant 
point sources 

6/23 Sunday Indianapolis 
biogenic/landscape emission change 

Johnsonville, Cumberland 

urban 
biogenic 

power plant 
6/29 Saturday Centreville 

C-130 inter-comparison 
Birmingham 

James H Miller Jr, EC Gaston 

 
 

urban 
power plant 

7/05 Friday Ozarks 
St Louis 

Archer Daniels Midland biofuel refinery 

biogenic 
urban 

point source 
7/10 Wednesday Transfer flight Smyrna to Tampa 

coal mines, paper mill 
hog farming 

 
point sources 
agriculture 

	1180	
	1181	

1182	
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Table	3:	Flight	descriptions	for	the	NOAA	WP-3D	nighttime	flights	in	the	SE	US	1183	
	1184	
Flight Date 

in 2013 
Day of the 

week 
Description Investigated 

Emission 
Sources 

6/19 Wednesday Atlanta day into night 
Missed approaches 

step profile in aged Atlanta plume 

urban 

7/02 Tuesday Birmingham north to south 
Centreville 

JH Miller, EC Gaston, Gorgas, US Steel, Greene County 

urban 
 

power plants 
7/03 Wednesday New Madrid, White Bluff 

agricultural fire 
power plants 

biomass burning 
	1185	
	1186	
Table	4:	Flight	descriptions	for	the	NOAA	WP-3D	flights	in	shale	gas	regions	1187	
	1188	
Flight Date in 

2013 
Day of the 

week 
Shale Play Additional Investigated 

Emission Sources 
6/10 Monday Haynesville  
6/25 Tuesday Haynesville  
6/26 Wednesday Fayetteville Biogenics in Ozarks 

Independence power plant 
7/06 Saturday Marcellus  
7/08 Monday Fayetteville New Madrid power plant 

	1189	
	1190	
	 	1191	
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Table	5:	Aerosol	instrumentation	on	the	NOAA	WP-3D	during	SENEX	1192	
	1193	

Measurement Name/Technique Accuracy Precision Sample 
Interval  

Reference 

Low turbulence inlet  LTI: decelerating inlet to 
provide sample air to aerosol 

instruments in fuselage 

N/A N/A N/A (Wilson et al., 
2004) 

Size distributions fine 
(0.004-1µm) and coarse 

(1-8.3µm) 

parallel CPCs, and white and 
laser light scattering 

  1s (Brock et al., 
2011; Brock 
et al., 2000) 

Cloud condensation 
nuclei (CCN) spectra 

from 0.1-0.8% 
supersaturation 

CCN: Continuous-flow 
streamwise thermal-gradient 
CCN counter with scanning 
flow CCN analysis (SCFA) 

Number: 
10%  

super-
saturation 
: 0.04% 

10 CCN cm-3 60s (Lance et al., 
2006; Lin et 

al., 2016; 
Moore and 

Nenes, 2009; 
Roberts and 

Nenes, 2005) 
8 cell optical extinction 
(dry 405, 532, 662nm, 

70% and 90% RH 
532nm, thermodenuded 

405 and 662nm) 

CRD: Cavity ringdown aerosol 
extinction spectrometer 

<2% 10% 0.1 Mm-1 1s (Langridge et 
al., 2011) 

5 cell optical absorption 
(dry 405, 532, 662nm, 
thermodenuded 405nm 

and 662nm) 

PAS: Photoacoustic Absorption 
Spectrometer 

10 % 1 Mm-1 1s (Lack et al., 
2012) 

Refractory BC mass 
content of individual 

particles 

SP2: Single-Particle Soot 
Photometer with laser-induced 

incandescence 

30% 0.5 fg (0.08 μm 
mass-equiv. 

diameter with 2 
g/cc density) 

1s (Schwarz et 
al., 2008; 

Schwarz et 
al., 2010) 

Non-refractory, 
submicron sulfate, 
nitrate, ammonium, 
organic and chloride 
mass concentrations 

AMS: Aerosol Mass 
Spectrometer  

50% 0.05, 0.07, 0.24, 
0.36, and 0.05 
μg sm-3 

(study average) 

10s (Bahreini et 
al., 2009a) 

Cloud particle size 
distribution (0.6-50μm) 

(3-50μm) 
(50-6000μm) 

Cloud probes: Laser light 
forward and back scattering 

Laser light forward scattering 
Droplet imaging probe 

  1s (Lance et al., 
2010) 

	1194	
	 	1195	
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Table	6:	Gas-phase	instrumentation	on	the	NOAA	WP-3D	during	SENEX	1196	
	1197	

Measurement Technique Accuracy Precision or 
Detec. Limit 

Sample 
Interval 

Reference 

CH4 
CO2 

wavelength-scanned cavity 
ring-down absorption 

spectroscopy 

0.07 ppm 
1 ppb 

0.11 ppm 
0.4 ppb 

1s (Peischl et al., 
2012) 

CO vacuum UV resonance 
fluorescence 

5% 0.5ppb 1s (Holloway et al., 
2000) 

SO2 pulsed UV fluorescence 20% 250ppt 1s (Ryerson et al., 
1998) 

NO 
NO2 
NOy 
O3 

Gas phase 
chemiluminescence 

3% 
4% 

12% 
2% 

10ppt 
30ppt 
40ppt 
15ppt 

1s (Pollack et al., 
2010; Ryerson et 

al., 1998; Ryerson 
et al., 1999) 

various VOCs PTR-MS: proton transfer 
reaction mass spectrometer 
using H3O+ as reagent ion 

25% depending 
on signal 

and species 

1s every 17s (de Gouw and 
Warneke, 2007) 

hydrocarbons, 
oxygenated 

VOCs 

iWAS: whole air sampler 
with immediate GC-MS 

analysis  

12-20% 
 

4-7ppt 
ppt 
ppt 

72/flight 
(3-8s) 

(Gilman et al., 
2009; Lerner et al., 

2015) 
HNO3 

HCOOH 
HONO 

HNO3-CIMS: chemical 
ionization mass spectrometer 

with I-	as reagent ion 

20%+50ppt 
20%+120ppt 
40%+30 ppt 

25 ppt 
40 ppt 
25 ppt 

1s (Neuman et al., 
2002; Neuman et 

al., 2003) 
NH3 NH3-CIMS: chemical 

ionization mass spectrometer 
with protonated acetone 

dimers as reagent ion 

25%+(0.02-
0.5) ppb 

(depending on 
flight) 

0.02-0.07 
ppb 

(depending 
on flight) 

1s (Neuman et al., 
2003; Nowak et al., 

2007) 

PAN 
PPN 

APAN 
ClNO2 

PAN-CIMS: chemical 
ionization mass spectrometry 

with I- as reagent ion 

0.04-0.05ppb 
0.04-0.1ppb 

0.01-0.02ppb 
0.01-0.02ppb 

0.01ppb 
0.003ppb 
0.006ppb 
0.02ppb 

2s (Osthoff et al., 
2008; Slusher et al., 
2004; Zheng et al., 

2011) 
various 

oxygenated 
VOCs 
ClNO2 
N2O5 

alkyl nitrates 

UW HR-ToF-CIMS: 
chemical ionization mass 

spectrometer with I- as 
reagent ion 

50%  depending 
on signal 

and species 

1s (Lee et al., 2014) 

glyoxal 
NO2 

ACES: cavity enhanced 
absorption spectroscopy 

5.8% 
5% 

34 pptv 
80 ppt 

10s 
5s 

(Min et al., 2015; 
Washenfelder et 

al., 2011c) 
NO 
NO2 
O3 

NO3 
N2O5 

CRDS: cavity ring-down 
absorption spectrometer 

5% 
5% 

10% 
20% 
12% 

1 ppbv 
0.2 ppbv 
0.2 ppbv 
3 pptv 
3 pptv 

1s (Dube et al., 2006; 
Wagner et al., 

2011a) 

HCHO In Situ Airborne 
Formaldehyde (ISAF): laser 

induced fluorescence 

10% 36ppt 1s (Cazorla et al., 
2015; DiGangi et 

al., 2011; Hottle et 
al., 2009) 

jNO2 and jO1D j-heads: filter radiometers 10%  1s  
	1198	
	1199	
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Figures:	1200	
	1201	
	1202	

	1203	
	1204	
Figure	1:	NOAA	WP-3D	aircraft	picture,	payload	and	layout.	The	photo	was	taken	during	1205	
the	inter-comparison	flight	with	the	NCAR	C-130	by	Lynne	Gratz.	1206	
	1207	
	 	1208	
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	1209	
	1210	
Figure	2:	NOAA	WP-3D	flight	tracks	for	daytime,	nighttime	and	shale	gas	flights	during	1211	
SENEX.	The	marker	size	for	the	power	plants	is	the	annual	gross	load,	for	the	paper	mills	1212	
the	capacity,	for	the	bio	refineries	the	biofuel	production,	for	the	coal	mines	the	methane	1213	
emissions,	and	for	the	land	fills	the	methane	emissions.	1214	
	 	1215	
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	1216	
	1217	
Figure	3:	NO2	inter-comparison	between	P-CL,	CRDS	and	ACES	instruments	and	ozone	1218	
inter-comparison	between	P-CL	and	CRDS.	1219	
	1220	
	 	1221	
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	1222	
	1223	
Figure	4:	Inter-comparison	between	PTR-MS	and	iWAS/GCMS.	1224	
	1225	
	 	1226	
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	1227	
	1228	
Figure	5:	HCOOH	inter-comparison	between	the	HNO3-CIMS	and	the	UW	HR-ToF-CIMS	as	1229	
a	time	series	for	a	selected	flight	and	a	scatter	plot.	The	color	code	in	the	scatter	plot	1230	
indicates	all	the	individual	flights.	The	black	line	is	a	fit	using	all	the	data	the	grey	lines	fits	1231	
for	individual	flights	with	the	highest	or	lowest	slope,	respectively.	1232	
	1233	
	 	1234	
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	1235	
	1236	
Figure	6:	Inter-comparison	between	the	UW	HR-ToF-CIMS	of	N2O5	with	CRDS	and	ClNO2	1237	
with	the	PAN-CIMS	as	time	series	and	scatter	plots	for	the	nighttime	flight	on	3	July	2013.		1238	
	1239	
	 	1240	
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	1241	
	1242	
Figure	7:	NOy	and	NOz	(=NOy-NOx)	budgets	for	the	NOAA	WP-3D	flight	on	16	June	2013	1243	
with	and	without	aerosol	nitrate.	1244	
	1245	
	 	1246	
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	1247	
	1248	
Figure	8:	The	aerosol	volume	derived	from	the	chemical	composition	data	(AMS	and	SP2)	1249	
was	compared	to	the	volume	from	the	size	distribution	data	(NMASS	and	UHSAS).	(a)	The	1250	
correlation	for	the	flight	on	16	June	2013	color-coded	by	the	density.	(b)	The	slopes	for	all	1251	
the	flights	color-coded	by	the	respective	correlation	coefficient	determined	as	shown	in	1252	
(a).	1253	
	1254	
	 	1255	
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1256	

	1257	
	1258	
Figure	9:	The	flight	track	of	the	NOAA	WP-3D	on	June	16,	2013	over	Atlanta,	GA	color	1259	
coded	with	NOy	in	the	top	panel	and	with	isoprene	on	the	bottom	panel.	The	underlying	1260	
maps	show	the	point	source	emissions	(power	plants,	paper	mills	and	land	fills)	in	the	top	1261	
panel	and	the	isoprene	emissions	potential	in	the	bottom	panel.	1262	
	 	1263	
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	1264	
	1265	
Figure	10:	Time	series	of	two	transects	during	the	16	June	2013	flight	downwind	of	a	1266	
landfill	and	two	paper	mills.	1267	
	1268	
	 	1269	
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	1270	
	1271	
Figure	11:	The	track	of	a	flight	on	6	July	1999	over	Atlanta	during	the	SOS99	campaign	1272	
color-coded	with	the	NOy	mixing	ratio.	Time	series	of	the	16	June	2013	and	the	6	July	1999	1273	
flights	for	NOy	and	CO	show	that	the	mixing	ratios	over	Atlanta	have	decreased	1274	
significantly	over	the	past	14	years.	1275	
	1276	
	 	1277	
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	1278	
	1279	
Figure	12:	The	track	from	the	22	June	2013	flight	over	Atlanta	color-coded	with	the	CO2	1280	
mixing	ratio.	Transects	downwind	of	the	coal	fired	Bowen	and	the	natural	gas	combined	1281	
cycle	McDonough	power	plants.	1282	
	1283	
	 	1284	
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	1285	

	1286	

	1287	
	1288	
Figure	13:	FLEXPART	model	results:	time	series	of	NOy	with	48	hours	of	accumulation	1289	
time,	the	flight	track	color-coded	by	modeled	NOy	and	the	surface	residence	time	for	a	1290	
point	on	the	last	transect	downwind	of	the	Harllee	Branch	power	plant.	1291	
	1292	
	 	1293	
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